История открытия закона сохранения и превращения энергии. Открытие закона сохранения энергии Закон сохранения энергии ученый

Закон сохранения и превращение энергии является одним из важнейших постулатов физики. Рассмотрим историю его появления, а также основные области применения.

Страницы истории

Для начала выясним, кто открыл закон сохранения и превращения энергии. В 1841 году английским физиком Джоулем и русским ученым Ленцем параллельно были проведены эксперименты, в результате которых ученым удалось на практике выяснить связь между механической работой и теплотой.

Многочисленные исследования, проводимые физиками в разных уголках нашей планеты, предопределили открытие закона сохранения и превращения энергии. В середине девятнадцатого века немецким ученым Майером была дана его формулировка. Ученый попробовал обобщить всю информацию об электричестве, механическом движении, магнетизме, физиологии человека, существовавшую в тот промежуток времени.

Примерно в этот же период аналогичные мысли были высказаны учеными в Дании, Англии, Германии.

Эксперименты с теплотой

Несмотря на многообразие идей, касающихся теплоты, полное представление о ней было дано только русским ученым Михаилом Васильевичем Ломоносовым. Современники не поддержали его идеи, считали, что теплота не связана с движением мельчайшим частиц, из которых состоит вещество.

Закон сохранения и превращения механической энергии, предложенный Ломоносовым, был поддержан только после того, как в ходе экспериментов Румфорду удалось доказать наличие движения частиц внутри вещества.

Для получения теплоты физик Дэви пытался плавить лед, осуществлял трение друг о друга двух кусков льда. Он выдвинул гипотезу, согласно которой теплота рассматривалась в качестве колебательного движения частиц материи.

Закон сохранения и превращение энергии по Майеру предполагал неизменность сил, вызывающих появление теплоты. Подобная идея была раскритикована другими учеными, которые напоминали о том, что сила связана со скоростью и массой, следовательно, ее значение не могло оставаться неизменной величиной.

В конце девятнадцатого века Майер обобщил свои идеи в брошюре и попытался разрешить актуальную проблему теплоты. Как использовался в то время закон сохранения и превращения энергии? В механике не было единого мнения относительно способов получения, превращения энергии, поэтому до конца девятнадцатого века этот вопрос оставался открытым.

Особенность закона

Закон сохранения и превращение энергии является одним из фундаментальных, позволяющих при определенных условиях измерять физические величины. Его называют первым началом термодинамики, основным объектом которого является сохранение этой величины в условиях изолированной системы.

Закон сохранения и превращения энергии устанавливает связь между величиной тепловой энергии, которая попадает в зону взаимодействия различных веществ, с тем ее количеством, которое уходит из данной зоны.

Переход одного вида энергии в другой не означает, что она исчезает. Нет, наблюдается лишь ее превращение в иную форму.

При этом наблюдается взаимосвязь: работа - энергия. Закон сохранения и превращения энергии предполагает постоянство этой величины (полное ее количество) при любых процессах, протекающих в Это свидетельствует о том, что в процессе перехода одного вида в другой, соблюдается количественная эквивалентность. Для того чтобы дать количественную характеристику разных видов движения, в физике введена ядерная, химическая, электромагнитная, тепловая энергия.

Современная формулировка

Как читается закон сохранения и превращения энергии в наши дни? Классическая физика предлагает математическую запись данного постулата в виде обобщенного уравнения состояния термодинамической замкнутой системы:

Это уравнение показывает, что полная механическая энергия замкнутой системы определяется в виде суммы кинетической, потенциальной, внутренней энергий.

Закон сохранения и превращения энергии, формула которого была представлена выше, объясняет неизменность этой физической величины в замкнутой системы.

Основным недостатком математической записи является ее актуальность только для замкнутой термодинамической системы.

Незамкнутые системы

Если учитывать принцип приращений, вполне можно распространить закон сохранения энергии и на незамкнутые физические системы. Данный принцип рекомендует записывать математические уравнения, связанные с описанием состояния системы, не в абсолютных показателях, а в их числовых приращениях.

Чтобы в полной мере учитывались все формы энергии, предлагалось добавлять в классическое уравнение идеальной системы сумму приращений энергий, которые вызваны изменениями состояния анализируемой системы под воздействием различных форм поля.

В обобщенном варианте имеет следующий вид:

dW = Σi Ui dqi + Σj Uj dqj

Именно это уравнение считается самым полным в современной физике. Именно оно стало основой закона сохранения и превращения энергии.

Значение

В науке нет исключений из данного закона, он управляет всеми природными явлениями. Именно на основании данного постулата можно выдвигать гипотезы о различных двигателях, включая и опровержения реальности разработки вечного механизма. Его можно применять во всех случаях, когда необходимо объяснять переходы одного вида энергии в другой.

Применение в механике

Как читается закон сохранения и превращения энергии в настоящее время? Его суть заключается в переходе одного вида этой величины в другой, но при этом ее общее значение остается неизменным. Те системы, в которых осуществляются механические процессы, именую консервативными. Такие системы являются идеализированными, то есть, в них не учитываются силы трения, иные виды сопротивлений, вызывающих рассеивание механической энергии.

В консервативной системе протекают только взаимные переходы потенциальной энергии в кинетическую.

Работа сил, которые действуют в подобной системе на тело, не связана с формой пути. Ее величина зависит от конечного и начального положения тела. В качестве примера сил такого рода в физике рассматривают силу тяжести. В консервативной системе величина работы силы на замкнутом участке равна нулю, а закон сохранения энергии будет справедлив в следующем виде: «В консервативной замкнутой системе сумма потенциальной и кинетической энергии тел, которые составляют системы, сохраняется неизменной».

К примеру, в случае свободного падения тела происходит переход потенциальной энергии в кинетическую форму, при этом суммарное значение этих видов не изменяется.

В заключение

Механическую работу можно рассматривать в качестве единственного способа взаимного перехода механического движения в иные формы материи.

Данный закон нашел применение в технике. После выключения двигателя автомобиля, происходит постепенная потеря кинетической энергии, последующая остановка транспортного средства. Исследования показали, что при этом наблюдается выделение определенного количества теплоты, следовательно, трущиеся тела нагреваются, увеличивая свою внутреннюю энергию. В случае трения либо любого сопротивления движению наблюдается переход механической энергии во внутреннюю величину, что свидетельствует о правильности закона.

Его современная формулировка имеет вид: «Энергия изолированной системы не исчезает в никуда, не появляется из ниоткуда. В любых явлениях, существующих внутри системы, наблюдается переход одного вида энергии в иной, передача от одного тела к другому, без количественного изменения».

После открытия данного закона физики не оставляют идею о создании вечного двигателя, в котором бы при замкнутом цикле не происходило изменения величины передаваемого системой тепла окружающему миру, в сравнении с получаемым извне теплом. Такая машина смогла бы стать неисчерпаемым источником тепла, способом решения энергетической проблемы человечества.

Закон сохранения энергии утверждает, что энергия тела никогда не исчезает и не появляется вновь, она может лишь превращаться из одного вида в другой. Этот закон универсален. В различных разделах физики он имеет свою формулировку. Классическая механика рассматривает закон сохранения механической энергии.

Полная механическая энергия замкнутой системы физических тел, между которыми действуют консервативные силы, является величиной постоянной. Так формулируется закон сохранения энергии в механике Ньютона.

Замкнутой, или изолированной, принято считать физическую систему, на которую не действуют внешние силы. В ней не происходит обмена энергией с окружающим пространством, и собственная энергия, которой она обладает, остаётся неизменной, то есть сохраняется. В такой системе действуют только внутренние силы, и тела взаимодействуют друг с другом. В ней могут происходить лишь превращения потенциальной энергии в кинетическую и наоборот.

Простейший пример замкнутой системы – снайперская винтовка и пуля.

Виды механических сил


Силы, которые действуют внутри механической системы, принято разделять на консервативные и неконсервативные.

Консервативными считаются силы, работа которых не зависит от траектории движения тела, к которому они приложены, а определяется только начальным и конечным положением этого тела. Консервативные силы называют также потенциальными . Работа таких сил по замкнутому контуру равна нулю. Примеры консервативных сил – сила тяжести, сила упругости .

Все остальные силы называются неконсервативными . К ним относятся сила трения и сила сопротивления . Их называют также диссипативными силами. Эти силы при любых движениях в замкнутой механической системе совершают отрицательную работу, и при их действии полная механическая энергия системы убывает (диссипирует). Она переходит в другие, не механические виды энергии, например, в теплоту. Поэтому закон сохранения энергии в замкнутой механической системе может выполняться, только если неконсервативные силы в ней отсутствуют.

Полная энергия механической системы состоит из кинетической и потенциальной энергии и является их суммой. Эти виды энергий могут превращаться друг в друга.

Потенциальная энергия

Потенциальную энергию называют энергией взаимодействия физических тел или их частей между собой. Она определяется их взаимным расположением, то есть, расстоянием между ними, и равна работе, которую нужно совершить, чтобы переместить тело из точки отсчёта в другую точку в поле действия консервативных сил.

Потенциальную энергию имеет любое неподвижное физическое тело, поднятое на какую-то высоту, так как на него действует сила тяжести, являющаяся консервативной силой. Такой энергией обладает вода на краю водопада, санки на вершине горы.

Откуда же эта энергия появилась? Пока физическое тело поднимали на высоту, совершили работу и затратили энергию. Вот эта энергия и запаслась в поднятом теле. И теперь эта энергия готова для совершения работы.

Величина потенциальной энергии тела определяется высотой, на которой находится тело относительно какого-то начального уровня. За точку отсчёту мы можем принять любую выбранную нами точку.

Если рассматривать положение тела относительно Земли, то потенциальная энергия тела на поверхности Земли равна нулю. А на высоте h она вычисляется по формуле:

Е п = m ɡ h ,

где m – масса тела

ɡ - ускорение свободного падения

h – высота центра масс тела относительно Земли

ɡ = 9,8 м/с 2

При падении тела c высоты h 1 до высоты h 2 сила тяжести совершает работу. Эта работа равна изменению потенциальной энергии и имеет отрицательное значение, так как величина потенциальной энергии при падении тела уменьшается.

A = - ( E п2 – E п1) = - ∆ E п ,

где E п1 – потенциальная энергия тела на высоте h 1 ,

E п2 - потенциальная энергия тела на высоте h 2 .

Если же тело поднимают на какую-то высоту, то совершают работу против сил тяжести. В этом случае она имеет положительное значение. А величина потенциальной энергии тела увеличивается.

Потенциальной энергией обладает и упруго деформированное тело (сжатая или растянутая пружина). Её величина зависит от жёсткости пружины и от того, на какую длину её сжали или растянули, и определяется по формуле:

Е п = k·(∆x) 2 /2 ,

где k – коэффициент жёсткости,

∆x – удлинение или сжатие тела.

Потенциальная энергии пружины может совершать работу.

Кинетическая энергия

В переводе с греческого «кинема» означает «движение». Энергия, которой физическое тело получает вследствие своего движения, называется кинетической. Её величина зависит от скорости движения.

Катящийся по полю футбольный мяч, скатившиеся с горы и продолжающие двигаться санки, выпущенная из лука стрела – все они обладают кинетической энергией.

Если тело находится в состоянии покоя, его кинетическая энергия равна нулю. Как только на тело подействует сила или несколько сил, оно начнёт двигаться. А раз тело движется, то действующая на него сила совершает работу. Работа силы, под воздействием которой тело из состояния покоя перейдёт в движение и изменит свою скорость от нуля до ν , называется кинетической энергией тела массой m .

Если же в начальный момент времени тело уже находилось в движении, и его скорость имела значение ν 1 , а в конечный момент она равнялась ν 2 , то работа, совершённая силой или силами, действующими на тело, будет равна приращению кинетической энергии тела.

E k = E k 2 - E k 1

Если направление силы совпадает с направлением движения, то совершается положительная работа, и кинетическая энергия тела возрастает. А если сила направлена в сторону, противоположную направлению движения, то совершается отрицательная работа, и тело отдаёт кинетическую энергию.

Закон сохранения механической энергии

Е k 1 + Е п1 = Е k 2 + Е п2

Любое физическое тело, находящееся на какой-то высоте, имеет потенциальную энергию. Но при падении оно эту энергию начинает терять. Куда же она девается? Оказывается, она никуда не исчезает, а превращается в кинетическую энергию этого же тела.

Предположим, на какой-то высоте неподвижно закреплён груз. Его потенциальная энергия в этой точке равна максимальному значению. Если мы отпустим его, он начнёт падать с определённой скоростью. Следовательно, начнёт приобретать кинетическую энергию. Но одновременно начнёт уменьшаться его потенциальная энергия. В точке падения кинетическая энергия тела достигнет максимума, а потенциальная уменьшится до нуля.

Потенциальная энергия мяча, брошенного с высоты, уменьшается, а кинетическая энергия возрастает. Санки, находящиеся в состоянии покоя на вершине горы, обладают потенциальной энергией. Их кинетическая энергия в этот момент равна нулю. Но когда они начнут катиться вниз, кинетическая энергия будет увеличиваться, а потенциальная уменьшаться на такую же величину. А сумма их значений останется неизменной. Потенциальная энергия яблока, висящего на дереве, при падении превращается в его кинетическую энергию.

Эти примеры наглядно подтверждают закон сохранения энергии, который говорит о том, что полная энергия механической системы является величиной постоянной . Величина полной энергии системы не меняется, а потенциальная энергия переходит в кинетическую и наоборот.

На какую величину уменьшится потенциальная энергия, на такую же увеличится кинетическая. Их сумма не изменится.

Для замкнутой системы физических тел справедливо равенство
E k1 + E п1 = E k2 + E п2 ,
где E k1 , E п1 - кинетическая и потенциальная энергии системы до какого-либо взаимодействия, E k2 , E п2 - соответствующие энергии после него.

Процесс преобразования кинетической энергии в потенциальную и наоборот можно увидеть, наблюдая за раскачивающимся маятником.

Нажать на картинку

Находясь в крайне правом положении, маятник словно замирает. В этот момент его высота над точкой отсчёта максимальна. Следовательно, максимальна и потенциальная энергия. А кинетическая равна нулю, так как он не движется. Но в следующее мгновение маятник начинает движение вниз. Возрастает его скорость, а, значит, увеличивается кинетическая энергия. Но уменьшается высота, уменьшается и потенциальная энергия. В нижней точке она станет равной нулю, а кинетическая энергия достигнет максимального значения. Маятник пролетит эту точку и начнёт подниматься вверх налево. Начнёт увеличиваться его потенциальная энергия, а кинетическая будет уменьшаться. И т.д.

Для демонстрации превращений энергии Исаак Ньютон придумал механическую систему, которую называют колыбелью Ньютона или шарами Ньютона .

Нажать на картинку

Если отклонить в сторону, а затем отпустить первый шар, то его энергия и импульс передадутся последнему через три промежуточных шара, которые останутся неподвижными. А последний шар отклонится с такой же скоростью и поднимется на такую же высоту, что и первый. Затем последний шар передаст свою энергию и импульс через промежуточные шары первому и т. д.

Шар, отведенный в сторону, обладает максимальной потенциальной энергией. Его кинетическая энергия в этот момент нулевая. Начав движение, он теряет потенциальную энергию и приобретает кинетическую, которая в момент столкновения со вторым шаром достигает максимума, а потенциальная становится равной нулю. Далее кинетическая энергия передаётся второму, затем третьему, четвёртому и пятому шарам. Последний, получив кинетическую энергию, начинает двигаться и поднимается на такую же высоту, на которой находился первый шар в начале движения. Его кинетическая энергия в этот момент равна нулю, а потенциальная равна максимальному значению. Далее он начинает падать и точно так же передаёт энергию шарам в обратной последовательности.

Так продолжается довольно долго и могло бы продолжаться до бесконечности, если бы не существовало неконсервативных сил. Но в реальности в системе действуют диссипативные силы, под действием которых шары теряют свою энергию. Постепенно уменьшается их скорость и амплитуда. И, в конце концов, они останавливаются. Это подтверждает, что закон сохранения энергии выполняется только в отсутствии неконсервативных сил.


Введение

1. Фундаментальный смысл закона сохранения энергии

2. История открытия закона сохранения и превращения энергии

Заключение

Список литературы

Введение

Актуальность нашей работы заключается в рассмотрении особенностей закона сохранения энергии, являющегося следствием однородности времени и в этом смысле являющегося универсальным, то есть присущим системам самой разной физической природы.

Цель работы состоит в изучении фундаментальных основ закона сохранения энергии.

Достижение цели предполагает решение ряда задач:

1) рассмотреть фундаментальный смысл закона сохранения энергии;

2) изучить историю открытия закона сохранения и превращения энергии.

Разными путями шли открыватели закона сохранения и превращения энергии к его установлению. Майер, начав с медицинского наблюдения, сразу рассматривал его как глубокий всеобъемлющий закон и раскрывал цепь энергетических превращений от космоса до живого организма. Джоуль упорно и настойчиво измерял количественное соотношение теплоты и механической работы. Гельмгольц связал закон с исследованиями великих механиков XVIII в.

1. Фундаментальный смысл закона сохранения энергии

Закон сохранения энергии -- «фундаментальный закон природы, установленный эмпирически и заключающийся в том, что энергия изолированной (замкнутой) физической системы сохраняется с течением времени» . Другими словами, энергия не может возникнуть из ничего и не может исчезнуть в никуда, она может только переходить из одной формы в другую.

С фундаментальной точки зрения, согласно теореме Нётер, закон сохранения энергии является следствием однородности времени и в этом смысле является универсальным, то есть присущим системам самой разной физической природы. Другими словами, для каждой конкретной замкнутой системы, вне зависимости от её природы можно определить некую величину, называемую энергией, которая будет сохраняться во времени. При этом выполнение этого закона сохранения в каждой конкретно взятой системе обосновывается подчинением этой системы своим специфическим законам динамики, вообще говоря различающимся для разных систем.

Однако в различных разделах физики по историческим причинам закон сохранения энергии формулируется по-разному, в связи с чем говорится о сохранении различных видов энергии. Например, в термодинамике закон сохранения энергии выражается в виде первого начала термодинамики.

Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда, закономерность, то более правильным является его именование не законом, а принципом сохранения энергии.

С математической точки зрения закон сохранения энергии эквивалентен утверждению, что система дифференциальных уравнений, описывающая динамику данной физической системы, обладает первым интегралом движения, связанным с симметричностью уравнений относительно сдвига во времени.

Согласно теореме Нётер каждому закону сохранению ставится в соответствие некая симметрия уравнений, описывающих систему. В частности, закон сохранения энергии эквивалентен однородности времени, то есть независимости всех законов, описывающих систему, от момента времени, в который система рассматривается.

Вывод этого утверждения может быть произведён, например, на основе лагранжева формализма. Если время однородно, то функция Лагранжа, описывающая систему, не зависит явно от времени, поэтому полная её производная по времени имеет вид:

Здесь -- функция Лагранжа, -- обобщённые координаты и их первые и вторые производные по времени соответственно. Воспользовавшись уравнениями Лагранжа, заменим производные на выражение:

Перепишем последнее выражение в виде

Сумма, стоящая в скобках, по определению называется энергией системы и в силу равенства нулю полной производной от неё по времени она является интегралом движения (то есть сохраняется) .

2. История открытия закона сохранения и превращения энергии

закон сохранение превращение энергия

В 1841 г. русский ученый Ленц и англичанин Джоуль почти одновременно и независимо друг от друга экспериментально доказали, что теплота может быть создана за счет механической работы. Джоуль определил механический эквивалент тепла. Эти и другие исследования подготовили открытие закона сохранения и превращения энергии. В 1842--1845 г.г. немецкий ученый Р. Майер сформулировал этот закон на основе обобщения данных естествознания о механическом движении, электричестве, магнетизме, химии и даже физиологии человека. Одновременно в Англии (Гров) и в Дании (Кольдинг) были высказаны аналогичные идеи. Несколько позднее этот закон разрабатывал Гельмгольц (Германия).

Воззрения на теплоту как форму движения мельчайших «нечувствительных» частиц материи высказывались еще в XVII в. Ф. Бэкон, Декарт, Ньютон, Гук и многие другие приходили к мысли, что теплота связана с движением частиц вещества . Но со всей полнотой и определенностью эту идею разрабатывал и отстаивал Ломоносов. Однако он был в одиночестве, его современники переходили на сторону концепции теплорода, и, как мы видели, эта концепция разделялась многими выдающимися учеными XIX столетия.

Успехи экспериментальной теплофизики, и прежде всего калориметрии, казалось, свидетельствовали в пользу теплорода. Но тот же XIX в. принес наглядные доказательства связи теплоты с механическим движением. Конечно, факт выделения тепла при трении был известен с незапамятных времен. Сторонники теплоты усматривали в этом явлении нечто аналогичное электризации тел трением -- трение способствует выжиманию теплорода из тела. Однако в 1798 г. Бенжамен Томпсон (1753?1814), ставший с 1790 г. графом Румфордом, сделал в мюнхенских военных мастерских важное наблюдение: при высверливании канала в пушечном стволе выделяется большое количество тепла. Чтобы точно исследовать это явление, Румфорд проделал опыт по сверлению канала в цилиндре, выточенном из пушечного металла. В высверленный канал помещали тупое сверло, плотно прижатое к стенкам канала и приводившееся во вращение. Термометр, вставленный в цилиндр, показал, что за 30 минут операции температура поднялась на 70 градусов Фаренгейта. Румфорд повторил опыт, погрузив цилиндр и сверло в сосуд с водой. В процессе сверления вода нагревалась и спустя 2,5 часа закипала. Этот опыт Румфорд считал доказательством того, что теплота является формой движения.

Опыты по получению теплоты трением повторил Дэви. Он плавил лед трением двух кусков друг о друга. Дэви пришел к выводу, что следует оставить гипотезу о теплороде и рассматривать теплоту как колебательное движение частиц материи.

По Майеру, все движения и изменения в мире порождаются «разностями», вызывающими силы, стремящиеся уничтожить эти разности. Но движение не прекращается, потому что силы неуничтожаемы и восстанавливают разности. «Таким образом, принцип, согласно которому раз данные силы количественно неизменны, подобно веществам, логически обеспечивает нам продолжение существования разностей, а значит, и материального мира» . Эта формулировка, предложенная Майером, легко уязвима для критики. Не определено точно понятие «разность», неясно, что понимается под термином «сила». Это предчувствие закона, а не самый еще закон. Но из дальнейшего изложения понятно, что под силой он понимает причину движения, которое измеряется произведением массы на скорость. «Движение, теплота и электричество представляют собою явления, которые могут быть сведены к одной силе, которые измеряются друг другом и переходят друг в друга по определенным законам» . Это вполне определенная и ясная формулировка закона сохранения и превращения силы, т.е. энергии.

Задавшись целью применить идеи механики в физиологии, Майер начинает с выяснения понятия силы. И здесь он вновь повторяет мысль о невозможности возникновения движения из ничего, сила -- причина движения, а причина движения является неразрушимым объектом. Эта формулировка поразительно напоминает формулировку «всеобщего закона» Ломоносова, распространяемого им «и на самые правила движения». Заметим, что выдвижение Ломоносовым и Майером всеобщего закона сохранения в качестве «верховного закона природы» принято современной наукой, которая формулирует многочисленные конкретные законы сохранения в качестве основной опоры научного исследования . Майер подробно подсчитывает механический эквивалент теплоты из разности теплоемкостей газа (этот подсчет нередко воспроизводится в школьных учебниках физики) и находит его, опираясь на измерения Делароша и Берара, а также Дюлонга, определивших отношение теплоемкостей для воздуха равным 367 кгс-м/ккал.

Майер закончил развитие своих идей к 1848 г., когда в брошюре «Динамика неба в популярном изложении» он поставил и сделал попытку решить важнейшую проблему об источнике солнечной энергии. Майер понял, что химическая энергия недостаточна для восполнения огромных расходов энергии Солнца. Но из других источников энергии в его время была известна только механическая энергия. И Майер сделал вывод, что теплота Солнца восполняется бомбардировкой его метеоритами, падающими на него со всех сторон непрерывно из окружающего пространства. Он признает, что открытие сделано им случайно (наблюдение на Яве), но «оно все же моя собственность, и я не колеблюсь защищать свое право приоритета». Майер указывает далее, что закон сохранения энергии, «а также численное выражение его, механический эквивалент теплоты, были почти одновременно опубликованы в Германии и Англии». Он указывает на исследования Джоуля и признает, что Джоуль «открыл безусловно самостоятельно» закон сохранения и превращения энергии и что «ему принадлежат многочисленные важные заслуги в деле дальнейшего обоснования и развития этого закона» . Но Май ер не склонен уступать свое право на приоритет и указывает, что из самих его работ видно, что он не гонится за эффектом. Это, однако, не означает отказа от прав на свою собственность.

Задолго до Джоуля исследования были начаты петербургским академиком Э.Х. Ленцем, который опубликовал свою работу в 1843 г. под заглавием «О законах выделения тепла гальваническим током». Ленц упоминает о работе Джоуля, публикация которого опередила публикацию Ленца, но считает, что, хотя его результаты в «основном совпадают с результатами Джоуля» , они свободны от тех обоснованных возражений, которые вызывают работы Джоуля.

Ленц тщательно продумал и разработал методику эксперимента, испытал и проверил тангенс-гальванометр, служивший у него измерителем тока, определил применяемую им единицу сопротивления (напомним, что закон Ома к этому времени еще не вошел во всеобщее употребление), а также единицы тока и электродвижущей силы, выразив последнюю через единицы тока и сопротивления. Ленц тщательно изучил поведение сопротивлений, в частности исследовал вопросе существовании так называемого «переходного сопротивления» при переходе из твердого тела в жидкость. Это понятие вводилось некоторыми физиками в эпоху, когда закон Ома еще не был общепризнанным. Затем он перешел к основному эксперименту, результаты которого сформулировал в следующих двух положениях: нагревание проволоки гальваническим током пропорционально сопротивлению проволоки; нагревание проволоки гальваническим током пропорционально квадрату служащего для нагревания тока. Точность и обстоятельность опытов Ленца обеспечили признание закона, вошедшего в науку под названием закона Джоуля -- Ленца.

Джоуль сделал свои эксперименты по выделению тепла электрическим током исходным пунктом дальнейших исследований выяснения связи между теплотой и работой. Уже на первых опытах он стал догадываться, что теплота, выделяемая в проволоке, соединяющей полюсы гальванической батареи, порождается химическими превращениями в батарее, т. е. стал прозревать энергетический смысл закона. Чтобы выяснить далее вопрос о происхождении «джоулева тепла» (как теперь называется теплота, выделяемая электрическим током), он стал исследовать теплоту, выделяемую индуцированным током. В работе «О тепловом эффекте магнитоэлектричества и механическом эффекте теплоты», доложенной на собрании Британской Ассоциации в августе 1843 г., Джоуль сформулировал вывод, что теплоту можно создавать с помощью механической работы, используя магнитоэлектричество (электромагнитную индукцию), и эта теплота пропорциональна квадрату силы индукционного тока.

Вращая электромагнит индукционной машины с помощью падающего груза, Джоуль определил соотношение между работой падающего груза и теплотой, выделяемой в цепи. Он нашел в качестве среднего результата из своих измерений, что «количество тепла, которое в состоянии нагреть один фунт воды на один градус Фаренгейта, может быть превращено в механическую силу, которая в состоянии поднять 838 фунтов на вертикальную высоту в один фут» . Переводя единицы фунт и фут в килограммы и метры и градус Фаренгейта в градус Цельсия, найдем, что механический эквивалент тепла, вычисленный Джоулем, равен 460 кгс-м/ккал. Этот вывод приводит Джоуля к другому, более общему выводу, который он обещает проверить в дальнейших экспериментах: «Могучие силы природы... неразрушимы, и... во всех случаях, когда затрачивается механическая сила, получается точное эквивалентное количество теплоты» . Он утверждает, что животная теплота возникает в результате химических превращений в организме и что сами химические превращения являются результатом действия химических сил, возникающих из «падения атомов» Таким образом, в работе 1843 г. Джоуль приходит к тем же выводам, к которым ранее пришел Майер.

Джоуль продолжал свои эксперименты и в 60-х и в 70-х годах. В 1870 г. он вошел в состав комиссии по определению механического эквивалента теплоты. В состав этой комиссии входили В. Томсон, Максвелл и другие ученые. Но Джоуль не ограничился работой экспериментатора. Он решительно встал на точку зрения кинетической теории теплоты и стал одним из основоположников кинетической теории газов. Об этой работе Джоуля будет сказано позднее. В отличие от своих предшественников Гельмгольц связывает закон с принципом невозможности вечного двигателя (perpetuum mobile). Этот принцип принимал еще Леонардо да Винчи, ученые XVII в. (вспомним, что Стевин обосновал закон наклонной плоскости невозможностью вечного движения), и, наконец, в XVIII в. Парижская Академия наук отказалась рассматривать проекты вечного двигателя. Гельмгольц считает принцип невозможности вечного двигателя тождественным принципу, что «все действия в природе можно свести на притягательные или отталкивательные силы». Материю Гельмгольц рассматривает как пассивную и неподвижную. Для того чтобы описать изменения, происходящие в мире, ее надо наделить силами как притягательными, так и отталкивательными. «Явления природы, -- пишет Гельмгольц, -- должны быть сведены к движениям материи с неизменными движущими силами, которые зависят только от пространственных взаимоотношений» . Разными путями шли открыватели закона сохранения и превращения энергии к его установлению. Майер, начав с медицинского наблюдения, сразу рассматривал его как глубокий всеобъемлющий закон и раскрывал цепь энергетических превращений от космоса до живого организма. Джоуль упорно и настойчиво измерял количественное соотношение теплоты и механической работы. Гельмгольц связал закон с исследованиями великих механиков XVIII в. Идя разными путями, они наряду со многими другими современниками настойчиво боролись за утверждение и признание закона вопреки противодействию цеховых ученых. Борьба была нелегкой и порой принимала трагический характер, но она окончилась полной победой. Наука получила в свое распоряжение великий закон сохранения и превращения энергии.

Заключение

Закон сохранения энергии -- фундаментальный закон природы, установленный эмпирически и заключающийся в том, что энергия изолированной (замкнутой) физической системы сохраняется с течением времени. Другими словами, энергия не может возникнуть из ничего и не может исчезнуть в никуда, она может только переходить из одной формы в другую.

Однако в различных разделах физики по историческим причинам закон сохранения энергии формулируется по-разному, в связи с чем говорится о сохранении различных видов энергии. Например, в термодинамике закон сохранения энергии выражается в виде первого начала термодинамики. Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда, закономерность, то более правильным является его именование не законом, а принципом сохранения энергии.

В 1841 г. русский ученый Ленц и англичанин Джоуль почти одновременно и независимо друг от друга экспериментально доказали, что теплота может быть создана за счет механической работы. Джоуль определил механический эквивалент тепла. Эти и другие исследования подготовили открытие закона сохранения и превращения энергии. В 1842--1845 г.г. немецкий ученый Р. Майер сформулировал этот закон на основе обобщения данных естествознания о механическом движении, электричестве, магнетизме, химии и даже физиологии человека. Одновременно в Англии (Гров) и в Дании (Кольдинг) были высказаны аналогичные идеи. Несколько позднее этот закон разрабатывал Гельмгольц (Германия). Разными путями шли открыватели закона сохранения и превращения энергии к его установлению.

Список литературы

1. 100 великих научных открытий / под Д.К. Самина. -- М.: Вече, 2002. -- 480 с.

2. Антошина, Л.Г., Павлов, С.В., Скипетрова, Л.А. Общая физика. Сборник задач / Л.Г. Антошина, С.В. Павлов, Л.А. Скипетрова. -- М.: Инфра-М, 2008. -- 336 с.

3. Блохинцев, Д.И. Основы квантовой механики / Д.И. Блохинцев. -- СПб.: Лань, 2004. -- 672 с.

4. Дуков, В.М. История формулировки закона сохранения энергии / В.М. Дуков // Физика. -- М.: Первое сентября. -- 2002. -- № 31/02. -- С. 32--34.

5. Кубо, Р. Термодинамика / Р. Кубо. -- М.: Наука, 2007. -- 307 с.

6. Сивухин, Д.В. Общий курс физики / Д.В. Сивухин. -- М.: Физматлит, 2004. -- 656 с.

7. Типлер, П.А., Ллуэллин, Р.А. Современная физика / П.А. Типлер, Р.А. Ллуэллин. -- М.: Мир, 2007. -- 496 с.

Подобные документы

    Трактовка понятия "живая сила" в научных работах Декарта, Лейбница, Ньютона, Юнга. Ознакомление с содержанием закона сохранения и превращения энергии в механике. Рассмотрение теплородной и кинетической теорий процессов превращения работы в теплоту.

    реферат , добавлен 30.07.2010

    Детерминизм как учение об объективной закономерной взаимосвязи и взаимообусловленности явлений материального и духовного миров. Общая характеристика законов сохранения, история открытия закона сохранения вещества. Эволюция закона сохранения энергии.

    реферат , добавлен 29.11.2009

    Симметрия и ее значения: пропорциональное (сбалансированное) и равновесие. Симметрия природы в физике, ее фундаментальные теории. Законы сохранения: закон изменения и закон сохранения полной энергии, закон сохранения импульса, закон сохранения заряда.

    реферат , добавлен 05.01.2008

    Фундаментальные законы сохранения (закон сохранения энергии, закон сохранения импульса, закон сохранения момента импульса). Связь законов сохранения с симметрией пространства и времени. Симметрия как основа описания объектов и процессов в микромире.

    реферат , добавлен 17.11.2014

    Иерархия естественно научных законов. Законы сохранения. Связь законов сохранения с симметрией системы. Фундаментальные физические законы, согласно которым при определенных условиях некоторые физические величины не изменяются с течением времени.

    реферат , добавлен 17.10.2005

    Законы сохранения массы и энергии в макроскопических процессах. Самоорганизация химических систем и энергетика химических процессов. Особенности биологического уровня организации материи. Загрязнение окружающей среды: атмосфера, вода, почва, пища.

    контрольная работа , добавлен 11.11.2010

    Закон сохранения массы как один из фундаментальных законов естествознания. Соотношение между энергией покоя и массой тела Эйнштейна, теория относительности. Взаимное преобразование массы и энергии в ядерной энергетике. Физическая суть огня, природа массы.

    реферат , добавлен 23.04.2010

    Динамические законы в макро и статические в микромире. Закон сохранения энергии и невозможность создания вечного двигателя первого рода. Второй закон термодинамики и невозможность создания вечного двигателя второго рода. Энергетика химических процессов.

    контрольная работа , добавлен 20.06.2010

    Понятие симметрии как неизменности (инвариантности) свойств и характеристик объекта по отношению к каким-либо преобразованиям (операциям) над ним. Значение законов сохранения (импульса, энергии, заряда) для науки. Изотропность пространства-времени.

    курсовая работа , добавлен 04.11.2011

    Пути развития естествознания в XVIII-XIX вв. Особенности космогонической теории Канта – Лапласа. Закон сохранения и превращения энергии. Клеточное строение растений и животных. Эволюционная теория Дарвина. Периодическая система элементов Менделеева.

Фундаментальный смысл закона сохранения энергии

Закон сохранения энергии - «фундаментальный закон природы, установленный эмпирически и заключающийся в том, что энергия изолированной (замкнутой) физической системы сохраняется с течением времени». Другими словами, энергия не может возникнуть из ничего и не может исчезнуть в никуда, она может только переходить из одной формы в другую.

С фундаментальной точки зрения, согласно теореме Нётер, закон сохранения энергии является следствием однородности времени и в этом смысле является универсальным, то есть присущим системам самой разной физической природы. Другими словами, для каждой конкретной замкнутой системы, вне зависимости от её природы можно определить некую величину, называемую энергией, которая будет сохраняться во времени. При этом выполнение этого закона сохранения в каждой конкретно взятой системе обосновывается подчинением этой системы своим специфическим законам динамики, вообще говоря различающимся для разных систем.

Однако в различных разделах физики по историческим причинам закон сохранения энергии формулируется по-разному, в связи с чем говорится о сохранении различных видов энергии. Например, в термодинамике закон сохранения энергии выражается в виде первого начала термодинамики.

Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда, закономерность, то более правильным является его именование не законом, а принципом сохранения энергии.

С математической точки зрения закон сохранения энергии эквивалентен утверждению, что система дифференциальных уравнений, описывающая динамику данной физической системы, обладает первым интегралом движения, связанным с симметричностью уравнений относительно сдвига во времени.

Согласно теореме Нётер каждому закону сохранению ставится в соответствие некая симметрия уравнений, описывающих систему. В частности, закон сохранения энергии эквивалентен однородности времени, то есть независимости всех законов, описывающих систему, от момента времени, в который система рассматривается.

Вывод этого утверждения может быть произведён, например, на основе лагранжева формализма. Если время однородно, то функция Лагранжа, описывающая систему, не зависит явно от времени, поэтому полная её производная по времени имеет вид:

Здесь - функция Лагранжа, - обобщённые координаты и их первые и вторые производные по времени соответственно. Воспользовавшись уравнениями Лагранжа, заменим производные на выражение :

Перепишем последнее выражение в виде

Сумма, стоящая в скобках, по определению называется энергией системы и в силу равенства нулю полной производной от неё по времени она является интегралом движения (то есть сохраняется).

История открытия закона сохранения и превращения энергии

В 1841 г. русский ученый Ленц и англичанин Джоуль почти одновременно и независимо друг от друга экспериментально доказали, что теплота может быть создана за счет механической работы. Джоуль определил механический эквивалент тепла. Эти и другие исследования подготовили открытие закона сохранения и превращения энергии. В 1842-1845 г.г. немецкий ученый Р. Майер сформулировал этот закон на основе обобщения данных естествознания о механическом движении, электричестве, магнетизме, химии и даже физиологии человека. Одновременно в Англии (Гров) и в Дании (Кольдинг) были высказаны аналогичные идеи. Несколько позднее этот закон разрабатывал Гельмгольц (Германия)

Воззрения на теплоту как форму движения мельчайших «нечувствительных» частиц материи высказывались еще в XVII в. Ф. Бэкон, Декарт, Ньютон, Гук и многие другие приходили к мысли, что теплота связана с движением частиц вещества . Но со всей полнотой и определенностью эту идею разрабатывал и отстаивал Ломоносов. Однако он был в одиночестве, его современники переходили на сторону концепции теплорода, и, как мы видели, эта концепция разделялась многими выдающимися учеными XIX столетия.

Успехи экспериментальной теплофизики, и прежде всего калориметрии, казалось, свидетельствовали в пользу теплорода. Но тот же XIX в. принес наглядные доказательства связи теплоты с механическим движением. Конечно, факт выделения тепла при трении был известен с незапамятных времен. Сторонники теплоты усматривали в этом явлении нечто аналогичное электризации тел трением - трение способствует выжиманию теплорода из тела. Однако в 1798 г. Бенжамен Томпсон (1753―1814), ставший с 1790 г. графом Румфордом, сделал в мюнхенских военных мастерских важное наблюдение: при высверливании канала в пушечном стволе выделяется большое количество тепла. Чтобы точно исследовать это явление, Румфорд проделал опыт по сверлению канала в цилиндре, выточенном из пушечного металла. В высверленный канал помещали тупое сверло, плотно прижатое к стенкам канала и приводившееся во вращение. Термометр, вставленный в цилиндр, показал, что за 30 минут операции температура поднялась на 70 градусов Фаренгейта. Румфорд повторил опыт, погрузив цилиндр и сверло в сосуд с водой. В процессе сверления вода нагревалась и спустя 2,5 часа закипала. Этот опыт Румфорд считал доказательством того, что теплота является формой движения.

Опыты по получению теплоты трением повторил Дэви. Он плавил лед трением двух кусков друг о друга. Дэви пришел к выводу, что следует оставить гипотезу о теплороде и рассматривать теплоту как колебательное движение частиц материи.

По Майеру, все движения и изменения в мире порождаются «разностями», вызывающими силы, стремящиеся уничтожить эти разности. Но движение не прекращается, потому что силы неуничтожаемы и восстанавливают разности. «Таким образом, принцип, согласно которому раз данные силы количественно неизменны, подобно веществам, логически обеспечивает нам продолжение существования разностей, а значит, и материального мира». Эта формулировка, предложенная Майером, легко уязвима для критики. Не определено точно понятие «разность», неясно, что понимается под термином «сила». Это предчувствие закона, а не самый еще закон. Но из дальнейшего изложения понятно, что под силой он понимает причину движения, которое измеряется произведением массы на скорость. «Движение, теплота и электричество представляют собою явления, которые могут быть сведены к одной силе, которые измеряются друг другом и переходят друг в друга по определенным законам». Это вполне определенная и ясная формулировка закона сохранения и превращения силы, т.е. энергии.

Задавшись целью применить идеи механики в физиологии, Майер начинает с выяснения понятия силы. И здесь он вновь повторяет мысль о невозможности возникновения движения из ничего, сила - причина движения, а причина движения является неразрушимым объектом. Эта формулировка поразительно напоминает формулировку «всеобщего закона» Ломоносова, распространяемого им «и на самые правила движения». Заметим, что выдвижение Ломоносовым и Майером всеобщего закона сохранения в качестве «верховного закона природы» принято современной наукой, которая формулирует многочисленные конкретные законы сохранения в качестве основной опоры научного исследования. Майер подробно подсчитывает механический эквивалент теплоты из разности теплоемкостей газа (этот подсчет нередко воспроизводится в школьных учебниках физики) и находит его, опираясь на измерения Делароша и Берара, а также Дюлонга, определивших отношение теплоемкостей для воздуха равным 367 кгс-м/ккал.

Майер закончил развитие своих идей к 1848 г., когда в брошюре «Динамика неба в популярном изложении» он поставил и сделал попытку решить важнейшую проблему об источнике солнечной энергии. Майер понял, что химическая энергия недостаточна для восполнения огромных расходов энергии Солнца. Но из других источников энергии в его время была известна только механическая энергия. И Майер сделал вывод, что теплота Солнца восполняется бомбардировкой его метеоритами, падающими на него со всех сторон непрерывно из окружающего пространства. Он признает, что открытие сделано им случайно (наблюдение на Яве), но «оно все же моя собственность, и я не колеблюсь защищать свое право приоритета». Майер указывает далее, что закон сохранения энергии, «а также численное выражение его, механический эквивалент теплоты, были почти одновременно опубликованы в Германии и Англии». Он указывает на исследования Джоуля и признает, что Джоуль «открыл безусловно самостоятельно» закон сохранения и превращения энергии и что «ему принадлежат многочисленные важные заслуги в деле дальнейшего обоснования и развития этого закона». Но Май ер не склонен уступать свое право на приоритет и указывает, что из самих его работ видно, что он не гонится за эффектом. Это, однако, не означает отказа от прав на свою собственность.

Задолго до Джоуля исследования были начаты петербургским академиком Э.Х. Ленцем, который опубликовал свою работу в 1843 г. под заглавием «О законах выделения тепла гальваническим током». Ленц упоминает о работе Джоуля, публикация которого опередила публикацию Ленца, но считает, что, хотя его результаты в «основном совпадают с результатами Джоуля», они свободны от тех обоснованных возражений, которые вызывают работы Джоуля.

Ленц тщательно продумал и разработал методику эксперимента, испытал и проверил тангенс-гальванометр, служивший у него измерителем тока, определил применяемую им единицу сопротивления (напомним, что закон Ома к этому времени еще не вошел во всеобщее употребление), а также единицы тока и электродвижущей силы, выразив последнюю через единицы тока и сопротивления. Ленц тщательно изучил поведение сопротивлений, в частности исследовал вопросе существовании так называемого «переходного сопротивления» при переходе из твердого тела в жидкость. Это понятие вводилось некоторыми физиками в эпоху, когда закон Ома еще не был общепризнанным. Затем он перешел к основному эксперименту, результаты которого сформулировал в следующих двух положениях: нагревание проволоки гальваническим током пропорционально сопротивлению проволоки; нагревание проволоки гальваническим током пропорционально квадрату служащего для нагревания тока. Точность и обстоятельность опытов Ленца обеспечили признание закона, вошедшего в науку под названием закона Джоуля - Ленца.

Джоуль сделал свои эксперименты по выделению тепла электрическим током исходным пунктом дальнейших исследований выяснения связи между теплотой и работой. Уже на первых опытах он стал догадываться, что теплота, выделяемая в проволоке, соединяющей полюсы гальванической батареи, порождается химическими превращениями в батарее, т. е. стал прозревать энергетический смысл закона. Чтобы выяснить далее вопрос о происхождении «джоулева тепла» (как теперь называется теплота, выделяемая электрическим током), он стал исследовать теплоту, выделяемую индуцированным током. В работе «О тепловом эффекте магнитоэлектричества и механическом эффекте теплоты», доложенной на собрании Британской Ассоциации в августе 1843 г., Джоуль сформулировал вывод, что теплоту можно создавать с помощью механической работы, используя магнитоэлектричество (электромагнитную индукцию), и эта теплота пропорциональна квадрату силы индукционного тока.

Вращая электромагнит индукционной машины с помощью падающего груза, Джоуль определил соотношение между работой падающего груза и теплотой, выделяемой в цепи. Он нашел в качестве среднего результата из своих измерений, что «количество тепла, которое в состоянии нагреть один фунт воды на один градус Фаренгейта, может быть превращено в механическую силу, которая в состоянии поднять 838 фунтов на вертикальную высоту в один фут». Переводя единицы фунт и фут в килограммы и метры и градус Фаренгейта в градус Цельсия, найдем, что механический эквивалент тепла, вычисленный Джоулем, равен 460 кгс-м/ккал. Этот вывод приводит Джоуля к другому, более общему выводу, который он обещает проверить в дальнейших экспериментах: «Могучие силы природы... неразрушимы, и... во всех случаях, когда затрачивается механическая сила, получается точное эквивалентное количество теплоты». Он утверждает, что животная теплота возникает в результате химических превращений в организме и что сами химические превращения являются результатом действия химических сил, возникающих из «падения атомов» Таким образом, в работе 1843 г. Джоуль приходит к тем же выводам, к которым ранее пришел Майер.

Джоуль продолжал свои эксперименты и в 60-х и в 70-х годах. В 1870 г. он вошел в состав комиссии по определению механического эквивалента теплоты. В состав этой комиссии входили В. Томсон, Максвелл и другие ученые. Но Джоуль не ограничился работой экспериментатора. Он решительно встал на точку зрения кинетической теории теплоты и стал одним из основоположников кинетической теории газов. Об этой работе Джоуля будет сказано позднее. В отличие от своих предшественников Гельмгольц связывает закон с принципом невозможности вечного двигателя (peгрetuum mobile). Этот принцип принимал еще Леонардо да Винчи, ученые XVII в. (вспомним, что Стевин обосновал закон наклонной плоскости невозможностью вечного движения), и, наконец, в XVIII в. Парижская Академия наук отказалась рассматривать проекты вечного двигателя. Гельмгольц считает принцип невозможности вечного двигателя тождественным принципу, что «все действия в природе можно свести на притягательные или отталкивательные силы». Материю Гельмгольц рассматривает как пассивную и неподвижную. Для того чтобы описать изменения, происходящие в мире, ее надо наделить силами как притягательными, так и отталкивательными. «Явления природы, - пишет Гельмгольц, - должны быть сведены к движениям материи с неизменными движущими силами, которые зависят только от пространственных взаимоотношений». Разными путями шли открыватели закона сохранения и превращения энергии к его установлению. Майер, начав с медицинского наблюдения, сразу рассматривал его как глубокий всеобъемлющий закон и раскрывал цепь энергетических превращений от космоса до живого организма. Джоуль упорно и настойчиво измерял количественное соотношение теплоты и механической работы. Гельмгольц связал закон с исследованиями великих механиков XVIII в. Идя разными путями, они наряду со многими другими современниками настойчиво боролись за утверждение и признание закона вопреки противодействию цеховых ученых. Борьба была нелегкой и порой принимала трагический характер, но она окончилась полной победой. Наука получила в свое распоряжение великий закон сохранения и превращения энергии.

Закон сохранения энергии - фундаментальный закон природы, установленный эмпирически и заключающийся в том, что энергия изолированной (замкнутой) физической системы сохраняется с течением времени. Другими словами, энергия не может возникнуть из ничего и не может исчезнуть в никуда, она может только переходить из одной формы в другую.

Однако в различных разделах физики по историческим причинам закон сохранения энергии формулируется по-разному, в связи с чем говорится о сохранении различных видов энергии. Например, в термодинамике закон сохранения энергии выражается в виде первого начала термодинамики. Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда, закономерность, то более правильным является его именование не законом, а принципом сохранения энергии.

В 1841 г. русский ученый Ленц и англичанин Джоуль почти одновременно и независимо друг от друга экспериментально доказали, что теплота может быть создана за счет механической работы. Джоуль определил механический эквивалент тепла. Эти и другие исследования подготовили открытие закона сохранения и превращения энергии. В 1842-1845 г.г. немецкий ученый Р. Майер сформулировал этот закон на основе обобщения данных естествознания о механическом движении, электричестве, магнетизме, химии и даже физиологии человека. Одновременно в Англии (Гров) и в Дании (Кольдинг) были высказаны аналогичные идеи. Несколько позднее этот закон разрабатывал Гельмгольц (Германия)Разными путями шли открыватели закона сохранения и превращения энергии к его установлению.



механической энергии. Превращения энергии

Поскольку движение и взаимодействие взаимосвязаны (взаимодействие определяет движение материальных объектов, а движение объектов, в свою очередь, влияет на их взаимодействие), то должна быть единая мера, характеризующая движение и взаимодействие материи.

Энергия и является единой скалярной количественной мерой различных форм движения и взаимодействия материи. Различным формам движения и взаимодействия соответствуют различные виды энергии: механическая, внутренняя, электромагнитная, ядерная и т.д. Простейшим видом энергии, соответствующим простейшей - механической - форме движения и взаимодействия материи, является механическая энергия.

Одним из наиболее важных законов всего естествознания является всеобщий закон сохранения энергии . Он утверждает, что энергия не возникает ниоткуда и не исчезает бесследно, а лишь переходит из одной формы в другую.

Закон сохранения механической энергии есть частный случай всеобщего закона сохранения энергии.

Полная механическая энергия материальной точки (частицы) и системы частиц складывается из двух частей. Первая составляющая энергии частицы обуславливается ее движением, называется кинетической энергией и вычисляется по формуле

где m - масса частицы, - ее скорость.

Кинетическая энергия частицы изменяется, если при движении частицы на нее действует сила (силы), совершающая работу.

В простейшем случае, когда сила постоянна по величине и по направлению, а траектория движения прямолинейна, то работаA , совершаемая этой силой при перемещении
, определяется по формуле

где s - пройденный путь, равный при прямолинейном движении модулю перемещения
,
- скалярное произведение векторови
, равное произведению модулей этих векторов на косинус угла
между ними.

Работа может быть положительной, если угол
острый (
90°), отрицательной, если угол
тупой (90°
180°), и может быть равна нулю если угол
прямой (
=90°).

Можно доказать, что изменение кинетической энергии
частицы при ее перемещении из точки 1 в точку 2 равно сумме работ, совершенных всеми силами, действующими на эту частицу, при данном перемещении:

, (6.13)

где
- кинетическая энергия частицы в начальной и в конечной точках,- работа, совершенная силой(i =1, 2, ... n ) при данном перемещении.

Кинетической энергией системы
изN частиц называется сумма кинетических энергий всех частиц системы. Ее изменение при любом изменении конфигурации системы, то есть произвольном перемещении частиц, равно суммарной работе
, совершенной всеми силами, действующими на частицы системы, при их перемещениях:

. (6.14)

Второй составляющей механической энергии является энергия взаимодействия, называемая потенциальной энергией. В механике понятие потенциальной энергии может быть введено не для любых взаимодействий, а лишь для определенного их класса.

Пусть в каждой точке пространства, где может находиться частица, на нее в результате взаимодействия с другими телами действует сила, зависящая только от координат x, y, z частицы и, возможно, от времени t :
. Тогда говорят, что частица находится в силовом поле взаимодействия с другими телами. Примеры: материальная точка, движущаяся в гравитационном поле Земли; электрон, движущийся в электростатическом поле неподвижного заряженного тела. В этих примерах сила, действующая на частицу, в каждой точке пространства от времени не зависит:
. Такие поля называются стационарными.

Если же, например, электрон будет находиться в электрическом поле конденсатора, напряжение между обкладками которого изменяется, то в каждой точке пространства сила будет зависеть и от времени:
. Такое поле называется нестационарным.

Сила, действующая на частицу, называется консервативной, а соответствующее поле – полем консервативной силы, если работа, совершаемая этой силой при перемещении частицы по произвольному замкнутому контуру, будет равна нулю.

К консервативным силам и соответствующим полям относятся сила всемирного тяготения и, в частности, сила тяжести (гравитационное поле), сила Кулона (электростатическое поле), сила упругости (поле сил, действующих на тело, прикрепленное к некоторой точке упругой связью).

Примерами неконсервативных сил являются сила трения, сила сопротивления среды движению тела.

Только для взаимодействий, которым соответствуют консервативные силы, может быть введено понятие потенциальной энергии.

Под потенциальной энергией
механической системы понимается величина, убыль которой (разность начального и конечного значений) при произвольном изменении конфигурации системы (изменении положения частиц в пространстве) равна работе
, совершаемой при этом всеми внутренними консервативными силами, действующими между частицами этой системы:

, (6.15)

где
- потенциальная энергия системы в начальной и конечной конфигурации.

Заметим, что убыль
равна с обратным знаком приращению (изменению)
потенциальной энергии и поэтому соотношение (6.15) можно записать в виде

. (6.16)

Такое определение потенциальной энергии системы частиц позволяет находить ее изменение при изменении конфигурации системы, но не само значение потенциальной энергии системы при заданной конфигурации. Поэтому во всех конкретных случаях уславливаются, при какой конфигурации системы (нулевой конфигурации) ее потенциальная энергия
принимается равной нулю (
). Тогда потенциальная энергия системы при любой ее конфигурации
, а из (6.15) следует, что

, (6.17)

то есть потенциальная энергия системы частиц некоторой конфигурации равна работе
, совершаемой внутренними консервативными силами при изменении конфигурации системы от данной до нулевой.

Потенциальная энергия тела, находящегося в однородном поле силы тяжести вблизи поверхности Земли, принимается равной нулю при нахождении тела на поверхности Земли. Тогда потенциальная энергия притяжения к Земле тела, находящегося на высоте h , равна работе силы тяжести
, совершаемой при перемещении тела с этой высоты на поверхность Земли, то есть на расстояниеh по вертикали:

Потенциальная энергия тела, прикрепленного к фиксированной точке упругой связью (пружиной), принимается равной нулю при недеформированной связи. Тогда потенциальная энергия упруго деформированной (растянутой или сжатой на величину
) пружины с коэффициентом жесткостиk равна

. (6.19)

Потенциальная энергия гравитационного взаимодействия материальных точек и электростатического взаимодействия точечных зарядов принимается равной нулю, если эти точки (заряды) удалены на бесконечное расстояние друг от друга. Поэтому энергия гравитационного взаимодействия материальных точек массами и
, находящихся на расстоянииr друг от друга, равна работе силы всемирного тяготения
, совершенной при изменении расстоянияx между точками от x=r до
:

. (6.20)

Из (6.20) следует, что потенциальная энергия гравитационного взаимодействия материальных точек при указанном выборе нулевой конфигурации (бесконечном удалении) оказывается отрицательной при размещении точек на конечном расстоянии друг от друга. Это связано с тем, что сила всемирного тяготения есть сила притяжения, и ее работа при удалении точек друг от друга отрицательна. Отрицательность потенциальной энергии означает, что при переходе этой системы из произвольной конфигурации в нулевую (при удалении точек с конечного расстояния на бесконечное) ее потенциальная энергия увеличивается.

Аналогично, потенциальная энергия электростатического взаимодействия точечных зарядов в вакууме равна

(6.21)

и отрицательна для притягивающихся разноименных зарядов (знаки иразличны) и положительна для отталкивающихся одноименных зарядов (знакииодинаковы).

Полной механической энергией системы (механической энергией системы)
называется сумма ее кинетической и потенциальной энергий

. (6.22)

Из (6.22) следует, что изменение полной механической энергии складывается из изменения ее кинетической и потенциальной энергии

Подставим в формулу (6.33) формулы (6.14) и (6.16). В формуле (6.14) общую работу
всех сил, действующих на точки системы, представим как сумму работы сил, внешних по отношению к рассматриваемой системе,
и работы внутренних сил, которая, в свою очередь, складывается из работы внутренних консервативных и неконсервативных сил,

:

После подстановки получим, что

Для замкнутой системы
0. Если система к тому же консервативна, то есть в ней действуют только внутренние консервативные силы, то и
=0. В этом случае уравнение (6.24) принимает вид
, а это означает, что

Уравнение (6.2) есть математическая запись закона сохранения механической энергии, который гласит: полная механическая энергия замкнутой консервативной системы постоянна, то есть не изменяется со временем.

Условие
0 выполняется, если в системе действуют и неконсервативные силы, но их работа равна нулю, как, например, при наличии сил трения покоя. В этом случае для замкнутой системы закон сохранения механической энергии также применим.

Отметим, что при
отдельные слагаемые механической энергии: кинетическая и потенциальная энергия, - не обязаны оставаться постоянными. Они могут изменяться, что сопровождается совершением работы консервативными внутренними силами, но изменения потенциальной и кинетической энергии
и
равны по модулю и противоположны по знаку. Например, за счет совершения внутренними консервативными силами работы над частицами системы ее кинетическая энергия возрастет, но при этом на равную величину уменьшится ее потенциальная энергия.

Если же в системе совершают работу неконсервативные силы, то это обязательно сопровождается взаимными превращениями механической и иных видов энергии. Так, совершение работы неконсервативными силами трения скольжения или сопротивления среды обязательно сопровождается выделением тепла, то есть переходом части механической энергии во внутреннюю (тепловую) энергию. Неконсервативные силы, работа которых приводит к переходу механической энергии в тепловую, называются диссипативными, а сам процесс перехода механической энергии в тепловую - диссипацией механической энергии.

Есть множество неконсервативных сил, работа которых, напротив, ведет к увеличению механической энергии системы за счет иных видов энергии. Например, в результате химических реакций происходит взрыв снаряда; при этом осколки получают прибавку механической (кинетической) энергии за счет работы неконсервативной силы давления расширяющихся газов - продуктов взрыва. В этом случае посредством совершения работы неконсервативных сил произошел переход химической энергии в механическую. Схема взаимных превращений энергии при совершении работы консервативными и неконсервативными силами представлена на рисунке 6.3.

Таким образом, работа есть количественная мера превращения одних видов энергии в другие. Работа консервативных сил равна количеству потенциальной энергии, перешедшей в кинетическую или наоборот (общая механическая энергия при этом не изменяется), работа неконсервативных сил равна количеству механической энергии, перешедшей в другие виды энергии или наоборот.

Рисунок 6.3 - Схема превращений энергии.

Всеобщий закон сохранения энергии фактически есть закон неуничтожимости движения в природе, а закон сохранения механической энергии - закон неуничтожимости механического движения при определенных условиях. Изменение же механической энергии при невыполнении этих условий не означает уничтожения движения или его появления ниоткуда, а свидетельствует о превращении одних форм движения и взаимодействия материи в другие.

Обратим внимание на отличие обозначений бесконечно малых величин. Например, dx обозначает бесконечно малое приращение координаты,
- скорости,dE – энергии, а бесконечно малую работу обозначают
. Это отличие имеет глубокий смысл. Координаты и скорость частицы, ее энергия и многие другие физические величины являются функциями состояния частицы (системы частиц), то есть определяются текущим состоянием частицы (системы частиц) и не зависят от того, какими были предшествующие состояния, и от того, каким способом частица (система) пришла в текущее состояние. Изменение такой величины можно представить как разность значений этой величины в конечном и начальном состояниях. Бесконечно малое изменение такой величины (функции состояния) называется полным дифференциалом и для величиныX обозначается dX .

Такие же величины, как работа или количество теплоты, характеризуют не состояние системы, а способ, которым был реализован переход из одного состояния системы в другое. Например, говорить о наличии работы у системы частиц в каком-то заданном состоянии бессмысленно, но можно говорить о работе, совершенной силами, действующими на систему, при ее переходе из одного состояния в другое. Таким образом, не имеет смысла говорить и о разности значений такой величины в конечном и начальном состояниях. Бесконечно малое количество величины Y , не являющейся функцией состояния, обозначается
.

Отличительным признаком функций состояния является то, что их изменения в процессах, в которых система, выйдя из исходного состояния, в него же и возвращается, равны нулю. Механическое состояние системы частиц задается их координатами и скоростями. Поэтому, если в результате некоторого процесса механическая система возвращается в исходное состояние, то координаты и скорости всех частиц системы принимают первоначальные значения. Механическая энергия, как величина, зависящая только от координат и скоростей частиц, также примет исходное значение, то есть не изменится. В то же время работа, совершенная силами, действующими на частицы, будет отлична от нуля, причем ее значение может быть разным в зависимости от вида траекторий, описанных частицами системы.