Равновесие тел первое условие равновесия твердого тела. Условия равновесия твердого тела

Определение

Равновесием тела называют такое состояние, когда любое ускорение тела равняется нулю, то есть все действия на тело сил и моментов сил уравновешены. При этом тело может:

  • находиться в состоянии спокойствия;
  • двигаться равномерно и прямолинейно;
  • равномерно вращаться вокруг оси, которая проходит через центр его тяжести.

Условия равновесия тела

Если тело находится в равновесии, то одновременно выполняются два условия.

  1. Векторная сумма всех сил, действующих на тело, равна нулевому вектору : $\sum_n{{\overrightarrow{F}}_n}=\overrightarrow{0}$
  2. Алгебраическая сумма всех моментов сил, действующих на тело, равна нулю: $\sum_n{M_n}=0$

Два условия равновесия являются необходимыми, но не являются достаточными. Приведем пример. Рассмотрим равномерно катящееся без проскальзывания колесо по горизонтальной поверхности. Оба условия равновесия выполняются, однако тело движется.

Рассмотрим случай, когда тело не вращается. Для того, чтобы тело не вращалось и находилось в равновесии, необходимо, чтобы сумма проекций всех сил на произвольную ось равнялась нулю, то есть равнодействующая сил. Тогда тело или находится в спокойствии, или двигается равномерно и прямолинейно.

Тело, которое имеет ось вращения, будет находиться в равновесном состоянии, если выполняется правило моментов сил: сумма моментов сил, которые вращают тело по часовой стрелке, должна равняться сумме моментов сил, которые вращают его против часовой стрелки.

Чтобы получить нужный момент при наименьшем усилии, нужно прикладывать силу как можно дальше от оси вращения, увеличивая тем же плечо силы и соответственно уменьшая значение силы. Примеры тел, которые имеют ось вращения, : рычаг, двери, блоки, коловорот и тому подобное.

Три вида равновесия тел, которые имеют точку опоры

  1. стойкое равновесие, если тело, будучи выведенным из положения равновесия в соседнее ближайшее положение и оставлено в спокойствии, вернется в это положение;
  2. неустойчивое равновесие, если тело, будучи выведенным из положения равновесия в соседнее положение и оставлено в спокойствии, будет еще больше отклоняться от этого положения;
  3. безразличное равновесие - если тело, будучи выведенным в соседнее положение и оставлено в спокойствии, останется в новом своем положении.

Равновесие тела с закрепленной осью вращения

  1. стойким, если в положении равновесия центр тяжести С занимает самое низкое положение из всех возможных ближних положений, а его потенциальная энергия будет иметь наименьшее значение из всех возможных значений в соседних положениях;
  2. неустойчивым, если центр тяжести С занимает наивысший из всех ближних положений, а потенциальная энергия имеет наибольшее значение;
  3. безразличным, если центр тяжести тела С во всех ближних возможных положениях находится на одном уровне, а потенциальная энергия при переходе тела, не изменяется.

Задача 1

Тело A массой m = 8 кг поставлено на шероховатую горизонтальную поверхность стола. К телу привязана нить, перекинутая через блок B (рисунок 1, а). Какой груз F можно подвязать к концу нити, свешивающейся с блока, чтобы не нарушить равновесия тела A? Коэффициент трения f = 0,4; трением на блоке пренебречь.

Определим вес тела ~A: ~G = mg = 8$\cdot $9,81 = 78,5 Н.

Считаем, что все силы приложены к телу A. Когда тело поставлено на горизонтальную поверхность, то на него действуют только две силы: вес G и противоположно направленная реакция опоры RA (рис. 1, б).

Если же приложить некоторую силу F, действующую вдоль горизонтальной поверхности, то реакция RA, уравновешивающая силы G и F, начнет отклоняться от вертикали, но тело A будет находиться в равновесии до тех пор, пока модуль силы F не превысит максимального значения силы трения Rf max, соответствующей предельному значению угла ${\mathbf \varphi }$o(рис. 1, в).

Разложив реакцию RA на две составляющие Rf max и Rn, получаем систему четырех сил, приложенных к одной точке (рис. 1, г). Спроецировав эту систему сил на оси x и y, получим два уравнения равновесия:

${\mathbf \Sigma }Fkx = 0, F - Rf max = 0$;

${\mathbf \Sigma }Fky = 0, Rn - G = 0$.

Решаем полученную систему уравнений: F = Rf max, но Rf max = f$\cdot $ Rn, а Rn = G, поэтому F = f$\cdot $ G = 0,4$\cdot $ 78,5 = 31,4 Н; m = F/g = 31,4/9,81 = 3,2 кг.

Ответ: Масса груза т = 3,2 кг

Задача 2

Система тел, изображённая на рис.2, находится в состоянии равновесия. Масса груза тг=6 кг. Угол между векторами $\widehat{{\overrightarrow{F}}_1{\overrightarrow{F}}_2}=60{}^\circ $. $\left|{\overrightarrow{F}}_1\right|=\left|{\overrightarrow{F}}_2\right|=F$. Найти массу гирь.

Равнодействующая сил ${\overrightarrow{F}}_1и\ {\overrightarrow{F}}_2$ равна по модулю весу груза и противоположна ему по направлению: $\overrightarrow{R}={\overrightarrow{F}}_1+{\overrightarrow{F}}_2=\ -m\overrightarrow{g}$. По теореме косинусов, ${\left|\overrightarrow{R}\right|}^2={\left|{\overrightarrow{F}}_1\right|}^2+{\left|{\overrightarrow{F}}_2\right|}^2+2\left|{\overrightarrow{F}}_1\right|\left|{\overrightarrow{F}}_2\right|{cos \widehat{{\overrightarrow{F}}_1{\overrightarrow{F}}_2}\ }$.

Отсюда ${\left(mg\right)}^2=$; $F=\frac{mg}{\sqrt{2\left(1+{cos 60{}^\circ \ }\right)}}$;

Поскольку блоки подвижные, то $m_г=\frac{2F}{g}=\frac{2m}{\sqrt{2\left(1+\frac{1}{2}\right)}}=\frac{2\cdot 6}{\sqrt{3}}=6,93\ кг\ $

Ответ: масса каждой из гирь равна 6,93 кг

Если тело неподвижно, то это тело находится в равновесии. Многие тела покоятся, несмотря на то, что на них действуют силы со стороны других тел. Это различные строения, камни, машины, части механизмов, мосты и многие другие тела. Задача изучения условий равновесия тел имеет большое практическое значение для машиностроения, строительного дела, приборостроения и других областей техники.
Все реальные тела под воздействием приложенных к ним сил со стороны других тел изменяют свою форму и размеры, то есть деформируются. Величина деформации зависит от многих факторов: материала тела, его формы, приложенных к нему сил. Деформации могут быть настолько малыми, что обнаружить их можно только при помощи специальных приборов.
Деформации могут быть большими, и тогда их легко заметить, например, растяжение пружины или резинового шнура, изгиб деревянной доски или тонкой металлической линейки.
Иногда действия сил вызывают значительные деформации тела, в этом случае, фактически после приложения сил, мы будем иметь дело с телом, которое имеет совершенно новые геометрические размеры и форму. Также необходимо будет определить условия равновесия этого нового деформированного тела. Подобные задачи, связанные с расчетом деформаций тел, как правило, очень сложны.
Довольно часто в реальных жизненных ситуациях деформации очень невелики, а тело при этом остается в равновесии. В таких случаях деформациями можно пренебречь и рассматривать ситуацию так, как если бы тела были недеформируемыми, т. е. абсолютно твердыми. Абсолютно твердое тело в механике - это такая модель реального тела, у которой расстояние между частицами не изменяется, каким бы воздействиям данное тело не подвергалось. Следует понимать, что абсолютно твердых тел в природе не существует, но в некоторых случаях мы можем считать реальное тело абсолютно твердым.
Например, железобетонную плиту перекрытия дома можно считать абсолютно твердым телом в том случае, когда на ней стоит очень тяжелый шкаф. Сила тяжести шкафа действует на плиту, и плита прогибается, но эта деформация будет столь мала, что обнаружить ее можно только с помощью точных приборов. Поэтому в данной ситуации мы можем пренебречь деформацией и считать плиту абсолютно твердым телом.
Выяснив условия равновесия абсолютно твердого тела, мы узнаем условия равновесия реальных тел в тех ситуациях, когда их деформациями можно пренебречь.
Статика - раздел механики, в котором изучаются условия равновесия абсолютно твердых тел.
В статике учитываются размеры и форма тел, а все рассматриваемые тела считаются абсолютно твердыми. Статику можно рассматривать как частный случай динамики, так как неподвижность тел, когда на них действуют силы, есть частный случай движения с нулевой скоростью.
Деформации, происходящие в теле, изучаются в прикладных разделах механики (теория упругости, сопротивление материалов). В дальнейшем для краткости абсолютно твердое тело будем называть твердым телом, или просто телом.
Выясним условия равновесия любого тела. Для этого используем законы Ньютона. Чтобы упростить себе задачу, разобьем мысленно все тело на большое число небольших частей, каждый из которых можно рассматривать как материальную точку. Все тело состоит из множества элементов, некоторые из них изображены на рисунке. Силы, которые действуют на данное тело со стороны других тел - это внешние силы. Внутренние силы - это силы, с которыми элементы действуют друг на друга. Сила F1,2 - это сила, действующая на элемент 1 со стороны элемента 2. Сила F2,1 приложена к элементу 2 элементом 1. Это внутренние силы; к ним относятся также силы F1,3 и F3,1, F2,3 и F3,2.
Силы F1, F2, F3 - это геометрическая сумма всех внешних сил, действующих на элементы 1, 2, 3. Силы F1 штрих, F2 штрих, F3 штрих - это геометрическая сумма внутренних сил, приложенных к элементам 1, 2, 3.
Ускорение каждого элемента тела равно нулю, потому что тело покоится. Значит, по второму закону Ньютона равна нулю и геометрическая сумма всех внутренних и внешних сил, действующих на элемент.
Для равновесия тела необходимо и достаточно, чтобы геометрическая сумма всех внешних и внутренних сил, действующих на каждый элемент этого тела, была равна нулю.
Каким условиям должны удовлетворять внешние силы, действующие на твердое тело, чтобы оно находилось в покое? Для этого сложим уравнения. Равенство получается ноль.
В первых скобках этого равенства записана векторная сумма всех внешних сил, действующих на тело, а во вторых скобках - векторная сумма всех внутренних сил, приложенных к элементам этого тела. Мы уже выяснили, используя третий закон Ньютона, что векторная сумма всех внутренних сил системы равна нулю, потому что любой внутренней силе соответствует сила равная ей по модулю и противоположная по направлению.
Следовательно, в полученном равенстве остается исключительно геометрическая сумма внешних сил, которые оказывают действие на тело.
Это равенство является обязательным условием для равновесия материальной точки. Если мы применяем его к твердому телу, то это равенство называют первым условием его равновесия.
В том случае, если твердое тело находится в равновесии, то геометрическая сумма внешних сил, приложенных к нему, равна нулю.
Учитывая тот факт, что к одним элементам тела может быть приложено сразу несколько внешних сил, а на другие элементы внешние силы могут вообще не действовать, то число всех внешних сил совершенно необязательно должно быть равно числу всех элементов.
Если сумма внешних сил равна нулю, то равна нулю и сумма проекций этих сил на оси координат. В частности для проекций внешних сил на ось ОХ можно записать, что сумма проекций на ось ОХ внешних сил равна нулю. Аналогичным способом может быть записано уравнение для проекций сил на оси ОY и OZ.
На основе условия равновесия любого элемента тела выведено первое условие равновесия твердого тела.

Статический расчет инженерных сооружений во многих случаях сводится к рассмотрению условий равновесия конструкции из систе­мы тел, соединенных, какими-нибудь связями. Связи, соединяющие части данной конструкции, будем называть внутренними в отличие от внешних связей, скрепляющих кон­струкцию с телами, в неё не входя­щими (например, с опорами).

Если после отбрасывания внешних связей (опор) конструкция остается жесткой, то для нее задачи статики решаются как для абсолютно твердо­го тела. Однако могут встречаться такие инженерные конструкции, ко­торые после отбрасывания внешних связей не остаются жесткими. Примером такой конструкции является трехшарнирная арка. Если отбросить опоры А и В, то арка не будет жесткой: ее части могут поворачиваться вокруг шарнира С.

На основании принципа отвердевания система сил, действующих на такую конструкцию, должна при равновесии удовлетворять ус­ловиям равновесия твердого тела. Но эти условия, как указывалось, будучи необходимыми, не будут являться достаточными; поэтому из них нельзя определить все неизвестные величины. Для решения задачи необходимо дополнительно рассмотреть равновесие какой-нибудь одной или нескольких частей конструкции.

Например, составляя условия равновесия для сил, действующих на трехшарнирную арку, мы получим три уравнения с четырьмя неизвестными Х А, Y A , X B , Y B . Рассмотрев дополнительно условия равновесия левой (или правой) ее половины, получим еще три уравнения, содержащие два новых неизвестных Х С, Y С, на рис. 61 не показанных. Решая полученную систему шести уравнений, найдем все шесть неизвестных.

14. Частные случаи приведения пространственной системы сил

Если при приведении системы сил к динамическому винту главный момент динамы оказался равным нулю, а главный век­тор отличен от нуля, то это означает, что система сил приведена к равнодействующей, причем центральная ось является линией действия этой равнодействующей. Выясним, при каких условиях, относящихся к главному век­тору Fp и главному моменту М 0 , это может быть. Поскольку главный момент динамы М* равен составляющей главного мо­мента М 0 , направленной по главному вектору, то рассматривае­мый случай М* =О означает, что главный момент М 0 перпенди­кулярен главному вектору, т. е. / 2 = Fo*M 0 = 0. Отсюда непо­средственно вытекает, что если главный вектор F 0 не равен нулю, а второй инвариант равен нулю, Fo≠O, / 2 = F 0 *M 0 =0, (7.9)то рассматриваемая система приводится к равнодействующей.

В частности, если для какого-либо центра приведения F 0 ≠0, а М 0 = 0, то это означает, что система сил приведена к равно­действующей, проходящей через данный центр приведения; при этом условие (7.9) также будет выполнено.Обобщим приведенную в главе V теорему о моменте равно­действующей (теорему Вариньона) на случай пространственной системы сил.Если пространственная система . сил приводится к равнодейст­вующей, то момент равнодействующей относительно произвольной точки равен геометрической сумме моментов всех сил относительно той же точки. П
усть система сил имеет равнодействующуюR и точка О лежит на линии действия этой равнодействующей. Если приводить заданную систему сил к этой точке, то получим, что главный момент равен нулю.
Возьмем какой-либо другой центр приведения О1; (7.10)С
другой стороны, на основании формулы (4.14) имеемMo1=Mo+Mo1(Fo), (7.11) т.к М 0 = 0. Сравнивая выражения (7.10) и (7.11) и учиты­вая, что в данном случае F 0 = R, получаем (7.12).

Таким образом, теорема доказана.

Пусть при каком-либо выборе центра приведения Fo=О, М ≠0. Так как главный вектор не зависит от центра приведе­ния, то он равен нулю и при любом другом выборе центра при­ведения. Поэтому главный момент тоже не меняется при пере­мене центра приведения, и, следовательно, в этом случае система сил приводится к паре сил с моментом, равным M0 .

Составим теперь таблицу всех возможных случаев приведения пространственной системы сил:

Если все силы находятся в одной плоскости, например, в пло­скости Оху, то их проекции на ось г и моменты относительно осей х и у будут равны нулю. Следовательно, Fz=0; Mox=0, Moy=0. Внося эти значения в формулу (7.5), найдем, что второй инва­риант плоской системы сил равен нулю.Тот же результат мы получим и для пространственной системы параллельных сил. Действительно, пусть все силы параллельны оси z . Тогда проекции их на оси х и у и моменты относительно оси z будут равны 0. Fx=0, Fy=0, Moz=0

На основании доказанного можно утверждать, что плоская система сил и система параллельных сил не приводятся к динамическому винту.

11. Равновесие тела при наличии трения скольжения Если два тела / и // (рис. 6.1) взаимодействуют друг с другом, соприкасаясь в точке А, то всегда реакцию R A , дейст­вующую, например, со стороны тела // и приложенную к телу /, можно разложить на две составляю­щие: N.4, направленную по общей нормали к поверхности соприкасаю­щихся тел в точке Л, и Т 4 , лежащую в касательной плоскости. Составляю­щая N.4 называется нормальной реак­цией, сила Т л называется силой тре­ния скольжения - она препятствует" скольжению тела / по телу //. В со­ответствии с аксиомой 4 (3 з-он Ньютона) на тело // со стороны тела / действует равная по модулю и противоположно направленная сила реакции. Ее составляющая, перпендикулярная касательной плос­кости, называется силой нормального давления. Как было сказано выше, сила трения Т А = О, если соприкасающиеся поверхности идеально гладкие. В реальных условиях поверхности шероховаты и во многих случаях пренебречь силой трения нельзя.Для выяснения основных свойств сил трения произведем опыт по схеме, представленной на рис. 6.2, а. К телу 5, нахо­дящемуся на неподвижной плите D, присоединена перекинутая через блок С нить, свободный конец которой снабжен опорной площадкой А. Если площадку А постепенно нагружать, то с уве­личением ее общего веса будет возрастать натяжение нити S , которое стремится сдвинуть тело вправо. Однако пока общая нагрузка не слишком велика, сила трения Т будет удерживать тело В в покое. На рис. 6.2, б изображены действующие на тело В силы, причем через Р обозначена сила тяжести, а через N - нормальная реакция плиты D . Если нагрузка недостаточна для нарушения покоя, справед­ливы следующие уравнения равновесия: N - P = 0, (6.1) S-T = 0. (6.2).Отсюда следует, что N = P и T = S. Таким образом, пока тело находится в покое, сила трения остается равной силе натя­жения нити S. Обозначим через Tmax силу трения в критический момент процесса нагружения, когда тело В теряет равновесие и начинает скользить по плите D . Следовательно, если тело нахо­дится в равновесии, то T≤Tmax.Максимальная сила трения Т тах зависит от свойств материа­лов, из которых сделаны тела, их состояния (например, от харак­тера обработки поверхности), а также от величины нормального давления N. Как показывает опыт, максимальная сила трения при­ближенно пропорциональна нор­мальному давлению, т. е. имеет место равенство Tmax = fN . (6.4).Это соотношение носит название закона Амонтона - Кулона. Безразмерный коэффициент / называется коэффициентом тре­ния скольжения. Как следует из опыта, его величина в широких пределах не зависит от площади соприкасающихся поверхностей, но зависит от материала и степени шероховатости соприкасаю­щихся поверхностей. Значения коэффициентов трения устанавли­ваются опытным путем и их можно найти в справочных таблицах. Неравенство" (6.3) можно теперь записать в виде T≤fN (6,5).Случай строгого равенства в (6.5) отвечает максимальному значению силы трения. Это значит, что силу трения можно вычислять по формуле T = fN только в тех случаях, когда зара­нее известно, что имеет место критический случай. Во всех же других случаях силу трения следует определять из уравнений равновесия.Рассмотрим тело, находящееся на шероховатой поверхности. Будем считать, что в результате действия активных сил и сил реакции тело находится в предельном равновесии. На рис. 6.6, a показана предельная реакция R и ее составляющие N и Т тах (в положении, изображенном на этом рисунке, активные силы стремятся сдвинуть тело вправо, максимальная сила трения Т та х направлена влево). Угол ф между предельной реакцией R и нор­малью к поверхности называется углом трения. Найдем этот угол. Из рис. 6.6, а имеем tgφ=Tmax/N или, пользуясь выражением (6.4), tgφ= f (6-7)Из этой формулы видно, что вместо коэффициента трения можно задавать угол трения (в справочных таблицах п

риводятся обе величины).



РАВНОВЕСИЕ ТЕЛ

«Дайте мне точку опоры, и я подниму Землю.»

Архимед


Условия равновесия.

  • I условие равновесия:
  • Тело находится в равновесии, если геометрическая сумма внешних сил, приложенных к телу, равна нулю.

F=0.

  • II условие равновесия:
  • Сумма моментов сил, действующих по часовой стрелке, должна равняться сумме моментов сил, действующих против часовой стрелки.

∑ M по час. =∑ M против час.

  • М = F l, где М – момент силы, F - сила, l – плечо силы – кратчайшее расстояние от точки опоры до линии действия силы.

Центр тяжести тела.

  • Центр тяжести тела- это точка, через которую проходит равнодействующая всех параллельных сил тяжести, действующих на отдельные элементы тела.
  • Найти центр тяжести данных фигур.
  • Найти центр тяжести данных фигур.
  • Найти центр тяжести данных фигур.
  • Найти центр тяжести данных фигур.

ВИДЫ РАВНОВЕСИЯ

Безразличное

Устойчивое

Неустойчивое


Если на тело, имеющее опору, действуют уравновешивающие силы, то тело находится в положении равновесия.


При отклонении тела от положения равновесия нарушается и равновесие сил. Если тело под действием равнодействующей силы возвращается в исходное положение, то это - устойчивое равновесие .

Если же тело под действием равнодействующей силы, ещё сильнее отклоняется от положения равновесия, то это - неустойчивое равновесие .


Возможен случай, когда при любом положении тела, равновесие сил сохраняется. Это состояние называется безразличным равновесием .


Вывод :

  • Равновесие устойчиво, если при малом отклонении от положения равновесия есть сила, стремящаяся вернуть его в это положение.
  • Устойчиво такое положение, в котором его потенциальная энергия минимальна.



В случае если центр тяжести расположен ниже точки опоры, равновесие тела или системы тел – устойчивое . При отклонении тела, центр тяжести повышается, и тело возвращается в исходное состояние.


Равновесие тела, имеющего точку опоры ниже центра тяжести, неустойчиво . Но равновесие может восстанавливаться путём смещения точки опоры тела в сторону смещения центра тяжести.



По положению центра тяжести можно судить о виде равновесия. Например езда эквилибриста по канату на велосипеде с противовесом является примером устойчивого равновесия .


Вывод :

  • Для устойчивости тела, находящегося на одной точке или линии опоры необходимо, чтобы центр тяжести находился ниже точки (линии) опоры.



Если при отклонении тела, имеющего площадь опоры, происходит повышение центра тяжести, то равновесие будет устойчивым. При устойчивом равновесии вертикальная прямая, проходящая через центр тяжести, всегда будет проходить через площадь опоры.


Два тела, у которых одинаковы вес и площадь опоры, но разная высота, имеют разный предельный угол наклона. Если этот угол превысить, то тела опрокидываются.


При более низком положении центра тяжести необходимо затратить большую работу для опрокидывания тела. Следовательно работа по опрокидыванию может служить мерой его устойчивости.


Неустойчивое равновесие

Устойчивое равновесие




Вывод :

1. Устойчиво то тело, у которого площадь опоры больше.

2. Из двух тел одинаковой площади устойчиво то, у которого центр тяжести расположен ниже, т.к. его можно отклонить без опрокидывания на большой угол.





  • Существует три вида равновесия: устойчивое, неустойчивое, безразличное.
  • Устойчиво положение тела, в котором его потенциальная энергия минимальна.
  • Устойчивость тел на плоской поверхности тем больше, чем больше площадь опоры и ниже центр тяжести.

Основным признаком взаимодействия тел в динамике является возникновение ускорений. Однако часто бывает нужно знать, при каких условиях тело, на которое действует несколько различных сил, не движется с ускорением. Подвесим

шар на нити. На шар действует сила тяжести, но не вызывает ускоренного движения к Земле. Этому препятствует действие равной по модулю и направленной в противоположную сторону силы упругости. Сила тяжести и сила упругости уравновешивают друг друга, их равнодействующая равна нулю, поэтому равно нулю и ускорение шара (рис. 40).

Точку, через которую проходит равнодействующая сил тяжести при любом расположении тела, называют центром тяжести (рис. 41).

Раздел механики, изучающий условия равновесия сил, называется статикой.

Равновесие невращающихся тел.

Равномерное прямолинейное поступательное движение тела или его покой возможны только при равенстве нулю геометрической суммы всех сил, приложенных к телу.

Невращающееся тело находится в равновесии, если геометрическая сумма сил, приложенных к телу, равна нулю.

Равновесие тел, имеющих ось вращения.

В повседневной жизни и технике часто встречаются тела, которые не могут двигаться поступательно, но могут вращаться вокруг оси. Примерами таких тел могут служить двери и окна, колеса автомобиля, качели и т. д. Если вектор силы Р лежит на прямой, пересекающей ось вращения, то эта сила уравновешивается силой упругости со стороны оси вращения (рис. 42).

Если же прямая, на которой лежит вектор силы F, не пересекает ось вращения, то эта сила не может быть уравновешена

силой упругости со стороны оси вращения, и тело поворачивается вокруг оси (рис. 43).

Вращение тела вокруг оси под действием одной силы может быть остановлено действием второй силы Опыт показывает, что если две силы по отдельности вызывают вращение тела в противоположных направлениях, то при их одновременном действии тёло находится в равновесии, если выполняется условие:

где - кратчайшие расстояния от прямых, на которых лежат векторы сил (линии действия сил), до оси вращения (рис. 44). Расстояние называется плечом силы, а произведение модуля силы на плечо называется моментом силы М:

Если моментам сил, вызывающим вращение тела вокруг оси по часовой стрелке, приписать положительный знак, а моментам сил, вызывающим вращение против часовой стрелки, - отрицательный знак, то условие равновесия тела, имеющего ось вращения, можно сформулировать в виде правила моментов: тело, имеющее неподвижную ось вращения, находится в равновесии, если алгебраическая сумма моментов всех приложенных к телу сил относительно этой оси равна нулю:

За единицу вращающего момента в СИ принимается момент силы в 1 Н, линия действия которой находится на расстоянии от оси вращения. Эту единицу называют ньютон-метром

Общее условие равновесия тела. Объединяя два вывода, можно сформулировать общее условие равновесия тела: тело находится в равновесии, если равны нулю геометрическая сумма векторов всех приложенных к нему сил и алгебраическая сумма моментов этих сил относительно оси вращения.

При выполнении общего условия равновесия тело необязательно находится в покое. Согласно второму закону Ньютона при равенстве нулю равнодействующей всех сил ускорение тела равно нулю и оно может находиться в покое или? двигаться равномерно и прямолинейно.

Равенство нулю алгебраической суммы моментов сил не означает также, что при этом тело обязательно находится в покое. На протяжении нескольких миллиардов лет с постоянным периодом продолжается вращение Земли вокруг оси именно потому, что алгебраическая сумма моментов сил, действующих на Землю со стороны других тел, очень мала. По той же причине продолжает вращение с постоянной частотой раскрученное велосипедное колесо, и только внешние силы останавливают это вращение.

Виды равновесия.

В практике большую роль играет не только выполнение условия равновесия тел, но и качественная характеристика равновесия, называемая устойчивостью. Различают три вида равновесия тел: устойчивое, неустойчивое и безразличное.

Равновесие называется устойчивым, если после небольших внешних воздействий тело возвращается в исходное состояние равновесия. Это происходит, если при небольшом смещении тела в любом направлении от первоначального положения равнодействующая сил, действующих на тело, становится отличной от нуля и направлена к положению равновесия. В устойчивом равновесии находится, например, шар на дне углубления (рис. 45).

Равновесие называется неустойчивым, если при небольшом смещении тела из положения равновесия равнодействующая приложенных к нему сил отлична от нуля и направлена от положения равновесия (рис. 46).

Еслн при небольших смещениях тела из первоначального положения равнодействующая приложенных к телу сил остается равной нулю, то тело находится в состоянии безразличного равновесия. В безразличном равновесии находится шар на горизонтальной поверхности (рис. 47).

Тело, имеющее неподвижную ось вращения, находится в устойчивом равновесии, если его центр тяжести расположен ниже оси вращения и находятся на вертикальной прямой, проходящей через ось вращения (рис. 48, а).

При небольшом отклонении от этого положения равновесия алгебраическая сумма моментов сил, действующих на тело, становится отличной от нуля и возникающий момент сил поворачивает тело к первоначальному положению равновесия (рис. 48, б).

Если же центр тяжести находится на вертикальной прямой, проходящей через ось вращения, но расположен выше оси вращения, то равновесие неустойчивое (рис. 49, а, б).

Тело находится в безразличном равновесии, когда ось вращения тела проходит через его центр тяжести (рис. 50).

Равновесие тела на опоре.

Если вертикальная линия, проведенная через центр тяжести С тела, пересекает площадь опоры, то тело находится в равновесии (рис. 51). Если же вертикальная линия, проведенная через центр тяжести, не пересекает площадь опоры, то тело опрокидывается (рис. 52).