Дефектоскопия трубопроводов – ультразвуковой способ контроля труб, сварных швов и соединений. Методика контроля состояния труб и сварных соединений Схема прозвучивания нижней части шва

Ультразвуковому контролю подвергаются технологические трубопроводы (в объеме согласно категории трубопровода), трубопроводы тепловых сетей (в зависимости от условий прокладки трубопровода и требований эксплуатирующей организации), пожарные трубопроводы, газопроводы, паропроводы, бурильная и насосно компрессорная труба и т.д.

Ультразвуковой контроль труб - это диагностика трубопровода на предмет наличия внутренних дефектов. Контролю может подвергаться как само тело трубы так и сварной шов. Данный вид дефектоскопии возможно произвести как в специально оборудованной лаборатории на территории нашего предприятия (если габариты изделия не превышают 2000 мм в длинну и 500 мм в диаметре и вес изделия не более 150 кг), так и по фактическому меcту нахождения объекта.

В случае если трубопровод действующий, ультразвуковой контроль производится после дренирования (удаления) транспортирующейся среды. Проведение ультразвукового контроля возможно без остановки технологического процесса, без остановки производства (в отличие от рентгеновского контроля).

Проведение ультразвукового контроля необходимо осуществлять не только при вводе трубопроводов в эксплуатацию, при проведении процедуры сертификации труб, но и на регулярной основе в целях предотвращения преждевременного износа труб и возникновения аварийных ситуаций.

Процедура ультразвуковой дефектоскопии трубопроводов состоит из следующих мероприятий:

    подготовка сварных соединений к проведению контроля (зачистка). Осуществляется силами заказчика или силами лаборатории по договоренности.

    маркировка сварных швов

    непосредственно контроль трубопроровода - контроль сварных швов или сплошной контроль металла трубопровода, толщинометрия при необходимости.

    разметка дефектных участков в случае возможности ремонта

    составление схемы трубопровода и заключения по результатам контроля

Как Вы уже убедились, ультразвуковой контроль труб - весьма эффективный метод дефектоскопии. Кроме того, данный вид контроля зарекомендовал себя еще и как наиболее точный, оперативный, низкозатратный и безопасный для человека.

Обратитесь в и мы организуем Вам весь комплекс работ по ультразвуковому контролю трубопроводов, выявим слабые места объектов, имеющиеся дефекты, дадим полную информацию об их размерах и местонахождении относительно поверхности изделия, исследуем сварные швы и соединения также в целях контроля их качества. Именно благодаря проведению подобных проверок Вы обеспечиваете долговременную бесперебойную, и самое важное безопасную работу оборудования.

Мониторинг технического состояния газопроводов является важной и ответственной задачей. Их повреждения и прорывы могут повлечь техногенные катастрофы с серьезными экологическими последствиями, финансовыми убытками и сбоями в промышленной деятельности.

Сварные швы на стыках стальных секций в трубопроводах являются самым уязвимым местом конструкции. Причем их прочность не зависит от давности или новизны соединения. Они нуждаются в постоянном контроле герметичности.

Стенки труб менее уязвимы, но в процессе эксплуатации они подвергаются давлению и агрессивному воздействию от перегоняемых веществ изнутри и неблагоприятным внешним влияниям снаружи. В результате даже прочные материалы и надежные защитные покрытия со временем могут повреждаться, деформироваться, портиться и разрушаться.

Для мониторинга и своевременного обнаружения дефектов применяется ультразвуковой контроль трубопроводов. С его помощью можно обнаружить даже самые мелкие или скрытые несовершенства шовных соединений или стенок труб.

На чем основана эта технология?

В основе ультразвукового метода диагностики лежат акустические волновые колебания, неразличимые для слуха человека, их регистрация и приборный анализ. Эти волны проходят через металл с определенной скоростью. Если в нем содержатся пустоты, скорость меняется и определяется приборами, как и отклонения в движении волнового потока из-за встречаемых препятствий или мест структурной неоднородности материала. По характеристикам акустических волн также можно понять форму и размеры дефектов, их расположение.

Как осуществляется ультразвуковой контроль газопроводов?

При проведении мониторинга в автоматическом режиме используются инфразвуковые системы, работающие на основе аппаратных и программных методов. Приборы для сбора акустической информации, установленные группами вдоль трубопровода на определенном расстоянии друг от друга, передают ее по каналам связи в диспетчерские пункты для интеграции, обработки и анализа. Фиксируются количество, координаты и параметры обнаруженных изъянов или утечек. Результаты сигналов отслеживаются специалистами на мониторе.

Автоматизированная инфразвуковая система мониторинга трубопроводов позволяет осуществлять постоянную дистанционную проверку их работы, контроль и управление в реальном времени с возможностью диагностики труднодоступных участков и отсеков газораспределения, с использованием сочетания одновременно нескольких методов мониторинга для большей точности результата и оперативного обнаружения дефектов, выявления утечек. Это современное оборудование высокого класса.

К системе могут быть также подключены датчики давления, температуры, расходомеры и измерители других параметров для получения информации о технологических процессах, происходящих в трубопроводе.

Преимущества метода:

  • ультразвуковое обследование – это бережный и неразрушающий контроль трубопроводов,
  • имеет высокую чувствительность и диагностическую точность,
  • минимальное время для обнаружения утечек газа или других веществ,
  • возможность дистанционного наблюдения,
  • безопасность,
  • удобство и простота монтажа и эксплуатации системы,
  • обследование не останавливает и не влияет на процесс технической эксплуатации трубопровода,
  • подходит для всех видов материалов, из которых изготавливаются трубы,
  • может использоваться при наземной и подземной прокладке труб,
  • может осуществляться в любых климатических условиях,
  • выгодно по экономическим затратам.

Предложения нашей компании для проведения мониторинга трубопроводов.

Качественный мониторинг состояния трубопроводов – это гарантия их безопасной эксплуатации, надежной работы и страховка от ущерба. Он обеспечивается благодаря надежности и эффективности применяемого оборудования.

Компания СМИС Эксперт занимается разработкой диагностических приборов и систем мониторинга с использованием современных научных знаний и инновационных технологий. Применение таких систем на практике обеспечивает высокий уровень и точность контроля целостности магистральных трубопроводов, своевременное обнаружение любых видов дефектов и предотвращение возникновения чрезвычайных ситуаций.

Воспользуйтесь нашими услугами по профессиональной организации ультразвукового контроля газопроводов и других объектов повышенной значимости, когда нужен опыт, ответственный подход и безупречный результат.

Ждем ваших заявок!

В сфере строительства используются трубы диаметром от 28 до 1420 мм с толщиной стенки от 3 до 30 мм. По дефектоскопичности весь диапазон диаметров труб можно условно разбить на три группы:

  1. 28...100 мм и Н = 3...7 мм
  2. 108...920 мм и Н= 4...25 мм
  3. 1020...1420 мм и Н= 12...30 мм

Проведенные специалистами МГТУ им. Н.Э. Баумана исследования показывают, что необходимо учитывать анизотропию упругих свойств материала при разработке методик ультразвукового контроля сварных стыков труб.

Особенности анизотропии трубной стали.

Предполагается, что скорости распространения поперечных волн не зависят от направления прозвучивания и постоянны по сечению стенки трубы. Но при ультразвуковом контроле сварных соединений магистральных газопроводов, выполненных из зарубежных и российских труб, выявлены значительный уровень акустических шумов, пропуск крупных корневых дефектов, а также неправильная оценка их координат.

Установлено, что при соблюдении оптимальных параметров контроля и соблюдении процедуры его проведения основной причиной пропуска дефекта является наличие заметной анизотропии упругих свойств основного материала, что оказывает влияние на скорость, затухание, отклонение от прямолинейности распространения ультразвукового пучка.

Прозвучив металл более чем 200 труб по схеме, представленной на рис. 1, выявлено, что среднеквадратичное отклонение скорости волны при данном направлении распространения и поляризации составляет 2 м/с (для поперечных волн). Отклонения скоростей от табличных на 100 м/с и более не случайны и связаны скорее всего с технологией производства проката и труб. Отклонения в таких масштабах значительно влияют на распространение поляризованных волн. Помимо описанной анизотропии, выявлена неоднородность скорости звука по толщине стенки трубы.

Рис. 1. Обозначения наплавлений в металле трубы: X, Y, Z.- направления распространения ультразвука: х. у.z:- направления поляризации; Y- направление проката: Z- перпендикуляр к плоскости трубы

Листовой прокат обладает слоистой текстурой, представляющей собой в волокна металла и неметаллических включений, вытянутые в процессе деформации. Неодинаковые по толщине зоны листа подвержены различным деформациям в результате воздействия на металл термомеханического цикла прокатки. Это ведет к тому, что на скорость звука дополнительно влияет глубина залегания прозвучиваемого слоя.

Контроль сварных швов труб различного диаметра.

Трубы диаметром 28...100 мм.

Сварные швы у труб диаметром от 28 до100 мм и высотой от 3 до 7 мм имеют такую особенность как образование провисаний внутри трубы, это при контроле прямым лучом приводит к появлению на экране дефектоскопа ложных эхо-сигналов, которые совпадают по времени с эхо-сигналами, отраженными от надкорневых дефектов, которые обнаруживаются однократно отраженным лучом. Так как эффективная ширина пучка соразмерна с толщиной стенки трубы, то отражатель обычно не удается найти по местоположению искателя относительно валика усиления. Также имеет место также наличие неконтролируемой зоны в центре шва из-за большой ширины валика шва. Все это ведет к тому, что вероятность обнаружения недопустимых объемных дефектов невелика (10-12%), но недопустимые плоскостнные дефекты определяются гораздо надежнее (~ 85 %). Главные параметры провисания (ширина, глубина и угол смыкания с поверхностью изделия) считаются случайными величинами для данного типоразмера труб; средние значения параметров составляют 6,5 мм; 2,7 мм и 56°30" соответственно.

Прокат ведет себя как неоднородная и анизотропная среда с достаточно сложными зависимостями скоростей упругих волн от направления прозвучивания и поляризации. Изменение скорости звука близко симметрично относительно середины сечения листа, причем вблизи этой середины скорость поперечной волны может значительно (до 10 %) уменьшаться относительно окружающих областей. Скорость поперечной волны в исследуемых объектах меняется в диапазоне 3070...3420 м/с. На глубине до 3 мм от поверхности проката вероятно незначительное (до 1 %) увеличение скорости поперечной волны.

Помехоустойчивость контроля значительно усиливается при использовании наклонных раздельно-совмещенных ПЭП типа РСН (рис. 2), названных хордовыми. Они были созданы в МГТУ им. Н.Э. Баумана. Особенность контроля состоит в том, что при выявлении дефектов не нужно поперечноге сканирование, оно нужно только по периметру трубы при прижатии к шву передней грани преобразователя.

Рис. 2. Наклонный хордовый РСН-ПЭП: 1- излучатель: 2 - приемник

Трубы диаметром 108...920 мм.

Трубы диаметром 108-920 мм и с Н в диапазоне 4-25 мм также совершают односторонней сваркой без обратной подварки. До последнего времени контроль над этими соединениями контролировались совмещенными ПЭП по методике, изложенной для труб диаметром 28-100 мм. Но известная методика контроля предполагает наличие существенно большой зоны совпадений (зоны неопределенности).Это ведет к незначительности достоверности оценки качества соединения. Совмещенные ПЭП обладают высоким уровнем реверберационных шумов, осложняющих расшифровку сигналов, и неравномерность чувствительности, которую не всегда получается компенсировать имеющимися средствами. Использование хордовых раздельно-совмещенных ПЭП для контроля данного типоразмера сварных соединений не эффективно в связи с тем, что из-за ограниченности значений углов ввода ультразвуковых колебаний с поверхности сварного соединения габариты преобразователей несоразмерно увеличиваются, увеличивается и площадь акустического контакта.

Созданные в МГТУ им. Н.Э. Баумана наклонные ПЭП с выравненной чувствительностью используются для контроля сварных стыков диаметром более 10 см. Выравнивание чувствительности добиваются выбором угла разворота 2 так, чтобы середина и верхняя часть шва прозвучивались центральным однократно отраженным лучом, а нижняя часть обследовалась прямыми периферийными лучами, падающими на дефект под углом Y, от центрального. На рис. 3. изображен график зависимости угла ввода поперечной волны от угла разворота и раскрытия диаграммы направленности Y. Здесь в ПЭП падающая и отраженная от дефекта волны горизонтально поляризованные (SН -волна).

Рис. 3. Изменение угла ввода альфа, в пределе половины угла раскрытия диаграммы направленности РСН-ПЭП в зависимости от угла разворота дельта.

Из графика видно, что при контроле изделий Н =25 мм неравномерность чувствительности РС-ПЭП может составлять до 5 дБ, а для совмещенного ПЭП она может достигнуть 25 дБ. РС-ПЭП обладает повышенным уровнем сигнала и имеет повышенную абсолютную чувствительность. РС-ПЭП четко выявляется зарубка площадью 0,5 мм2 при контроле сварного соединения толщиной 1 см как прямым, так и однократно отраженным лучом при отношении полезный сигнал/помеха 10 дБ. Процесс проведения контроля рассмотренными ПЭП аналогичен процедуре проведения совмещенным ПЭП.

Трубы диаметром 1020...1420 мм.

Для выполнения сварных стыков труб диаметром от 1020 и 1420 мм с Н в диапазоне от 12 до30 мм используют двустороннюю сварку или сварку с подваркой обратного валика шва. В швах, сделанных двусторонней сваркой чаще всего ложные сигналы от задней кромки валика усиления имеют меньшую помеху, чем в односторонних швах. Они меньше по амплитуде из-за более плавных очертаний валика и дальше по развертке. В связи с этим для дефектоскопии это наиболее удобный типоразмер труб. Но проведенные в МГТУ им. Н.Э. Баумана исследования показывают, что металл этих труб характеризуется наибольшей анизотропией. В целях минимизации влияния анизотропии на выявляемость дефектов лучше всего использовать ПЭП на частоту 2,5 МГц с углом призмы 45°, а не 50°, как советуется в большинстве нормативных документов на контроль подобных соединений. Более высокая достоверность контроля достигнута при применении ПЭП типа РСМ-Н12. Но в отличие от способа, изложенного для труб диаметром 28-100 мм, при контроле данных соединений нет зоны неопределенности. В остальном принцип контроля остается таким же. При применении РС-ПЭП настройку скорости развертки и чувствительности рекомендуется производить по вертикальному сверлению. Настройка скорости развертки и чувствительности наклонных совмещенных ПЭП должна производится по угловым отражателям соответствующего размера.

Осуществляя контроль сварных швов необходимо помнить что в околошовной зоне могут случаться расслоения металла, которые усложняют определение координат дефекта. Зону с найденным наклонным ПЭП дефектом необходимо проверить прямым ПЭП для уточнения особенностей дефекта и выявления истинного значения глубины дефекта.

В нефтехимической промышленности, атомной энергетике для производства трубопроводов, сосудов нашли широкое применение плакированные стали. В качестве плакировки внутренней стенки таких конструкций берутся аустенитные стали наносимые методом наплавки, прокатки или взрыва толщиной в 5-15 мм.

Метод контроля данных сварных соединений предуполагает оценку сплошности перлитной части сварного шва, в том числе и зоны сплавления с восстановительной антикоррозионной наплавкой. Сплошность тела самой наплавки контролю не подлежит.

Но из-за отличия акустических качеств основного металла и аустенйтной стали от границы раздела при узи контроле появляются эхо-сигналы, образующие помехи обнаружению таких дефектов, как отслоений плакировки и поднаплавочных трещин. Наличие плакировки значительно влияет на параметры акустического тракта ПЭП.

В связи с этим для проведения контроля толстостенных сварных швов плакированных трубопроводов стандартные технологические решения не дают должного результата.

Многолетний исследования ряда специалистов: В.Н. Радько, Н.П. Разыграева, В.Е. Белого, В.С. Гребенника и др позволили определить главные особенности акустического тракта, разработать рекомендации по оптимизации его параметров, создать технологию узи контроля сварных швов с аустенитной плакировкой.

В работах специалистов установлено, что при переотражении пучка ультразвуковых волн от границы перлит-аустенитная плакировка диаграмма направленности почти не именяется в ситуации плакировки прокаткой и значительно деформируется в случае осуществления плакировки наплавкой. Ее ширина резко возрастает, а в пределах главного лепестка появляются осцилляции в 15-20 дБ в зависимости от типа наплавки. Имеет место быть значительное смещение точки выхода отражения от границы плакировки пучка по сравнению с его геометрическими координатами и перемена скорости поперечных волн в переходной зоне.

С учетом этих особенностей технология контроля сварных соединений плакированных трубопроводов предполагает предварительное обязательное измерение толщины перлитной части.

Лучшего нахождения плоскостных дефектов (трещин и несплавлений) достигается при помощи применения ПЭП с углом ввода 45° и на частоты 4 МГц. Лучшая выявляемость вертикально ориентированных дефектов на угле ввода 45° по сравнению с углами 60 и 70° обусловлена тем, что при прозвучивании последними угол встречи пучка с дефектом близок к 3-му критическому, при котором коэффициент отражения поперечной волны является наименьшим.

На частоте 2 МГц при прозвучивании снаружи трубы эхо-сигналы от дефектов экранируются интенсивным и длительным сигналом шума. Помехоустойчивость ПЭП на частоту 4 МГц в среднем на 12 дБ выше, а значит полезный сигнал от дефекта, располагающегося в непосредственной близости от границы наплавки, станет лучше разрешаться на фоне помех.

При прозвучивании изнутри трубы через наплавку максимальная помехоустойчивость устанавливается при настройке ПЭП на частоту 2 МГц.

Метод контроля сварных швов трубопроводов с наплавкой регламентируется руководящим документом Госатомнадзора РФПНАЭГ-7-030-91.

Выбор по производителю

Не выбрано Компьютерная радиография DUERR NDT / DÜRR NDT АКС Синтез НДТ Proceq SA НПЦ Кропус Константа Центр МЕТ Bosello High Technology SaluTron® Messtechnik GmbH ЗИО "ПОЛАРИС" НПП «Промприбор» ЭЛИТЕСТ Промтест Bruker ТОЧПРИБОР FUTURE-TECH CORP. OXFORD Instruments Амкро Ньюком-НДТ Sonotron NDT YXLON International Array Corporation Raycraft General Electric Vidar systems corporation ООО «Арсенал НК» Echo Graphic НПП "Машпроект"

Дефектоскопия труб

11.10.2016

Дефектоскопия труб - одна из подкатегорий неразрушающего ультразвукового контроля , наряду с дефектоскопией основного металла и швов. Данный метод дефектоскопии - один из самых востребованных услуг для контроля нефте- и газопроводов во многих отраслях промышленности: химической, нефтегазовой, топливной, электроэнергетической и др.

В процессе длительной эксплуатации, равно как и в производстве, трубопроводы подвергаются внутреннему и внешнему воздействию, в ходе которых могут накапливаться различные дефекты (коррозионные повреждения, усталостные трещины, нарушения целостности металла, неметаллические включения, закаты, плены, раковины и др.). Очень важным является своевременное обнаружение таких дефектов до выхода трубопровода из строя. Еще более важным является возможность проведения диагностики без остановки или вывода системы из эксплуатации. Именно поэтому для дефектоскопии труб используются методы неразрушающего контроля, среди них магнитные (магнитной анизотропии, магнитной памяти металла, магнитной проницаемости), акустические (импульсные ультразвуковые, волн Лэмба, фазовые, акустической эмиссии), электрические и оптические (визуальные - эндоскопические, лазерные, голографические).

Такие методы применяются для выявления различных дефектов: нарушения герметичности, контроля напряженного состояния, контроля качества и состояния сварных соединений, контроля протечек и других параметров, ответственных за эксплуатационную надежность трубопроводов.

Среди методик проведения дефектоскопии трубопроводов можно выделить толщинометрию тела трубы и ультразвуковое исследование тела и концов трубы для выявления дефектов продольной и поперечной ориентации.

Для промышленных инженерных коммуникаций введен ряд стандартов, подразумевающих довольно жесткую проверку соединений. Эти методики переносятся на системы, находящиеся в частном владении. Применение методов позволяет избежать аварийных ситуаций и провести наружный и скрытый монтаж с требуемым уровнем качества.

Входной контроль

Входной контроль труб проводится для всех типов материалов, включая металлопластиковые, полиэтиленовые и полипропиленовые после покупки изделий.

Упоминаемые стандарты подразумевают проверку труб, независимо от материала, из которого они изготовлены. Входной контроллинг подразумевает правила проверки получаемой партии. Проверка сварных соединений проводится в рамках приемки работ по монтажу коммуникаций. Описываемые способы обязательны к применению строительно-монтажными организациями при сдаче жилых, коммерческих и промышленных объектов с системами водоснабжения и отопления. Похожие способы применяются, где необходим контроль качества труб в коммуникациях промышленного типа, действующих в составе оборудования.

Последовательность проведения и методики

Приемка продукции после поставки является важным процессом, впоследствии гарантирующим отсутствие нерациональных затрат на замену трубной продукции и аварий. Тщательной проверке подлежит, как количество продукции, так и ее особенности. Количественная проверка позволяет учитывать весь расход продукции и избежать лишних затрат, связанных с завышенными нормами и нерациональным использованием. Нельзя упускать и влияние человеческого фактора.

Работы проводятся в соответствии с разделом № 9 стандарта СП 42-101-96.

Последовательность входных мероприятий следующая:

  • Проверка сертификата и соответствия маркировки;
  • Выборочные испытания образцов проводятся при сомнениях в качестве. Исследуется величина предела текучести при растяжении и удлинении при механическом разрыве;
  • Даже при отсутствии сомнений в поставке отбирается небольшое количество образцов для испытаний, в пределах 0,25-2% партии, но не менее 5 шт. При использовании продукции в бухтах, отрезают 2 м;
  • Проводится осмотр поверхности;
  • Осматривается на предмет вздутий и трещин;
  • Измеряют типовые размеры толщин и стенок микрометром или штангенциркулем.

При официальной проверке коммерческой или государственной организацией по факту проведения процедуры составляется протокол.

Неразрушающий контроль – особенности

Неразрушающие способы используются в функционирующих системах инженерных коммуникации. Особенное внимание уделяется реальному состоянию металла и сварным соединениям. Безопасность эксплуатации определяется качеством сварки швов. При длительной эксплуатации исследуется степень повреждения конструкции между соединениями. Они могут быть повреждены ржавчиной, что приводит к истончению стенок, а засорение полости может привести к повышению давления и прорыву трубопровода.

Для этих целей предложено специализированное оборудование – дефектоскопы (например, ультразвуковые), которые могут применяться для проведения работ в частных и коммерческих целях.

В исследованиях трубопроводов применяют методы контроля труб:


С помощью данного оборудование отслеживается развитие трещин или нарушение целостности. Причем основным достоинством является определение скрытых дефектов. Очевидно, что каждый из этих методов показывает высокую эффективность на определенных видах повреждений. Вихретоковый дефектоскоп в какой-то степени является универсальным и оптимальным по стоимости.

Ультразвуковой контроль труб – более дорогое удовольствие и требовательно, но очень популярно среди специалистов благодаря сформировавшемуся стереотипу. Многие сантехники используют капиллярный и магнитопорошковый метод, который применим для всех видов трубной продукции, включая полиэтиленовые и полипропиленовые. Среди специалистов популярно средство Testex для проверки герметичности сварки.

Заключение

Из предложенных способов неразрушающего контроля все 4 варианта успешно используются на практике, но не обладают абсолютной универсальностью. Система контроля труб включает в себя все виды дефектоскопов для проведения работ. Некоторой степенью универсальности обладает ультразвуковой способ, а также методика, основанная на вихревых токах. Причем вихревой вариант оборудования обходится значительно дешевле.