Графики и их формулы. Основные элементарные функции, их свойства и графики

    1) Область определения функции и область значений функции .

    Область определения функции - это множество всех допустимых действительных значений аргумента x (переменной x ), при которых функция y = f(x) определена. Область значений функции - это множество всех действительных значений y , которые принимает функция.

    В элементарной математике изучаются функции только на множестве действительных чисел.

    2) Нули функции .

    Нуль функции – такое значение аргумента, при котором значение функции равно нулю.

    3) Промежутки знакопостоянства функции .

    Промежутки знакопостоянства функции – такие множества значений аргумента, на которых значения функции только положительны или только отрицательны.

    4) Монотонность функции .

    Возрастающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует большее значение функции.

    Убывающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует меньшее значение функции.

    5) Четность (нечетность) функции .

    Четная функция - функция, у которой область определения симметрична относительно начала координат и для любого х из области определения выполняется равенство f(-x) = f(x) . График четной функции симметричен относительно оси ординат.

    Нечетная функция - функция, у которой область определения симметрична относительно начала координат и для любого х из области определения справедливо равенство f(-x) = - f(x ). График нечетной функции симметричен относительно начала координат.

    6) Ограниченная и неограниченная функции .

    Функция называется ограниченной, если существует такое положительное число M, что |f(x)| ≤ M для всех значений x . Если такого числа не существует, то функция - неограниченная.

    7) Периодическость функции .

    Функция f(x) - периодическая, если существует такое отличное от нуля число T, что для любого x из области определения функции имеет место: f(x+T) = f(x). Такое наименьшее число называется периодом функции. Все тригонометрические функции являются периодическими. (Тригонометрические формулы).

    19. Основные элементарные функции, их свойства и графики. Применение функ-ций в экономике.

Основные элементарные функции. Их свойства и графики

1. Линейная функция.

Линейной функцией называется функция вида , где х - переменная, а и b - действительные числа.

Число а называют угловым коэффициентом прямой, он равен тангенсу угла наклона этой прямой к положительному направлению оси абсцисс. Графиком линейной функции является прямая линия. Она определяется двумя точками.

Свойства линейной функции

1. Область определения - множество всех действительных чисел: Д(y)=R

2. Множество значений - множество всех действительных чисел: Е(у)=R

3. Функция принимает нулевое значение при или.

4. Функция возрастает (убывает) на всей области определения.

5. Линейная функция непрерывная на всей области определения, дифференцируемая и .

2. Квадратичная функция.

Функция вида , где х - переменная, коэффициенты а, b, с - действительные числа, называетсяквадратичной.


Знание основных элементарных функций, их свойств и графиков не менее важно, чем знание таблицы умножения. Они как фундамент, на них все основано, из них все строится и к ним все сводится.

В этой статье мы перечислим все основные элементарные функции, приведем их графики и дадим без вывода и доказательств свойства основных элементарных функций по схеме:

  • поведение функции на границах области определения, вертикальные асимптоты (при необходимости смотрите статью классификация точек разрыва функции);
  • четность и нечетность;
  • промежутки выпуклости (выпуклости вверх) и вогнутости (выпуклости вниз), точки перегиба (при необходимости смотрите статью выпуклость функции, направление выпуклости, точки перегиба, условия выпуклости и перегиба);
  • наклонные и горизонтальные асимптоты;
  • особые точки функций;
  • особые свойства некоторых функций (например, наименьший положительный период у тригонометрических функций).

Если Вас интересует или , то можете перейти к этим разделам теории.

Основными элементарными функциями являются: постоянная функция (константа), корень n -ой степени, степенная функция, показательная, логарифмическая функция, тригонометрические и обратные тригонометрические функции.

Навигация по странице.

Постоянная функция.

Постоянная функция задается на множестве всех действительных чисел формулой , где C – некоторое действительное число. Постоянная функция ставит в соответствие каждому действительному значению независимой переменной x одно и то же значение зависимой переменной y – значение С . Постоянную функцию также называют константой.

Графиком постоянной функции является прямая, параллельная оси абсцисс и проходящая через точку с координатами (0,C) . Для примера покажем графики постоянных функций y=5 , y=-2 и , которым на рисунке, приведенном ниже, отвечают черная, красная и синяя прямые соответственно.

Свойства постоянной функции.

  • Область определения: все множество действительных чисел.
  • Постоянная функция является четной.
  • Область значений: множество, состоящее из единственного числа С .
  • Постоянная функция невозрастающая и неубывающая (на то она и постоянная).
  • Говорить о выпуклости и вогнутости постоянной не имеет смысла.
  • Асимптот нет.
  • Функция проходит через точку (0,C) координатной плоскости.

Корень n -ой степени.

Рассмотрим основную элементарную функцию, которая задается формулой , где n – натуральное число, большее единицы.

Корень n -ой степени, n - четное число.

Начнем с функции корень n -ой степени при четных значениях показателя корня n .

Для примера приведем рисунок с изображениями графиков функций и , им соответствуют черная, красная и синяя линии.


Аналогичный вид имеют графики функций корень четной степени при других значениях показателя.

Свойства функции корень n -ой степени при четных n .

Корень n -ой степени, n - нечетное число.

Функция корень n -ой степени с нечетным показателем корня n определена на всем множестве действительных чисел. Для примера приведем графики функций и , им соответствуют черная, красная и синяя кривые.


При других нечетных значениях показателя корня графики функции будут иметь схожий вид.

Свойства функции корень n -ой степени при нечетных n .

Степенная функция.

Степенная функция задается формулой вида .

Рассмотрим вид графиков степенной функции и свойства степенной функции в зависимости от значения показателя степени.

Начнем со степенной функции с целым показателем a . В этом случае вид графиков степенных функций и свойства функций зависят от четности или нечетности показателя степени, а также от его знака. Поэтому сначала рассмотрим степенные функции при нечетных положительных значениях показателя a , далее - при четных положительных, далее - при нечетных отрицательных показателях степени, и, наконец, при четных отрицательных a .

Свойства степенных функций с дробными и иррациональными показателями (как и вид графиков таких степенных функций) зависят от значения показателя a . Их будем рассматривать, во-первых, при a от нуля до единицы, во-вторых, при a больших единицы, в-третьих, при a от минус единицы до нуля, в-четвертых, при a меньших минус единицы.

В заключении этого пункта для полноты картины опишем степенную функцию с нулевым показателем.

Степенная функция с нечетным положительным показателем.

Рассмотрим степенную функцию при нечетном положительном показателе степени, то есть, при а=1,3,5,… .

На рисунке ниже приведены графики степенных фнукций – черная линия, – синяя линия, – красная линия, – зеленая линия. При а=1 имеем линейную функцию y=x .

Свойства степенной функции с нечетным положительным показателем.

Степенная функция с четным положительным показателем.

Рассмотрим степенную функцию с четным положительным показателем степени, то есть, при а=2,4,6,… .

В качестве примера приведем графики степенных функций – черная линия, – синяя линия, – красная линия. При а=2 имеем квадратичную функцию, графиком которой является квадратичная парабола .

Свойства степенной функции с четным положительным показателем.

Степенная функция с нечетным отрицательным показателем.

Посмотрите на графики степенной функции при нечетных отрицательных значениях показателя степени, то есть, при а=-1,-3,-5,… .

На рисунке в качестве примеров показаны графики степенных функций – черная линия, – синяя линия, – красная линия, – зеленая линия. При а=-1 имеем обратную пропорциональность , графиком которой является гипербола .

Свойства степенной функции с нечетным отрицательным показателем.

Степенная функция с четным отрицательным показателем.

Перейдем к степенной функции при а=-2,-4,-6,… .

На рисунке изображены графики степенных функций – черная линия, – синяя линия, – красная линия.

Свойства степенной функции с четным отрицательным показателем.

Степенная функция с рациональным или иррациональным показателем, значение которого больше нуля и меньше единицы.

Обратите внимание! Если a - положительная дробь с нечетным знаменателем, то некоторые авторы считают областью определения степенной функции интервал . При этом оговариваются, что показатель степени a – несократимая дробь. Сейчас авторы многих учебников по алгебре и началам анализа НЕ ОПРЕДЕЛЯЮТ степенные функции с показателем в виде дроби с нечетным знаменателем при отрицательных значениях аргумента. Мы будем придерживаться именно такого взгляда, то есть, будем считать областями определения степенных функций с дробными положительными показателями степени множество . Рекомендуем учащимся узнать взгляд Вашего преподавателя на этот тонкий момент, чтобы избежать разногласий.

Рассмотрим степенную функцию с рациональным или иррациональным показателем a , причем .

Приведем графики степенных функций при а=11/12 (черная линия), а=5/7 (красная линия), (синяя линия), а=2/5 (зеленая линия).

Степенная функция с нецелым рациональным или иррациональным показателем, большим единицы.

Рассмотрим степенную функцию с нецелым рациональным или иррациональным показателем a , причем .

Приведем графики степенных функций, заданных формулами (черная, красная, синяя и зеленая линии соответственно).

>

При других значениях показателя степени a , графики функции будут иметь схожий вид.

Свойства степенной функции при .

Степенная функция с действительным показателем, который больше минус единицы и меньше нуля.

Обратите внимание! Если a - отрицательная дробь с нечетным знаменателем, то некоторые авторы считают областью определения степенной функции интервал . При этом оговариваются, что показатель степени a – несократимая дробь. Сейчас авторы многих учебников по алгебре и началам анализа НЕ ОПРЕДЕЛЯЮТ степенные функции с показателем в виде дроби с нечетным знаменателем при отрицательных значениях аргумента. Мы будем придерживаться именно такого взгляда, то есть, будем считать областями определения степенных функций с дробными дробными отрицательными показателями степени множество соответственно. Рекомендуем учащимся узнать взгляд Вашего преподавателя на этот тонкий момент, чтобы избежать разногласий.

Переходим к степенной функции , кгода .

Чтобы хорошо представлять вид графиков степенных функций при , приведем примеры графиков функций (черная, красная, синяя и зеленая кривые соответственно).

Свойства степенной функции с показателем a , .

Степенная функция с нецелым действительным показателем, который меньше минус единицы.

Приведем примеры графиков степенных функций при , они изображены черной, красной, синей и зеленой линиями соответственно.

Свойства степенной функции с нецелым отрицательным показателем, меньшим минус единицы.

При а=0 и имеем функцию - это прямая из которой исключена точка (0;1) (выражению 0 0 условились не придавать никакого значения).

Показательная функция.

Одной из основных элементарных функций является показательная функция.

График показательной функции , где и принимает различный вид в зависимости от значения основания а . Разберемся в этим.

Сначала рассмотрим случай, когда основание показательной функции принимает значение от нуля до единицы, то есть, .

Для примера приведем графики показательной функции при а = 1/2 – синяя линия, a = 5/6 – красная линия. Аналогичный вид имеют графики показательной функции при других значениях основания из интервала .

Свойства показательной функции с основанием меньшим единицы.

Переходим к случаю, когда основание показательной функции больше единицы, то есть, .

В качестве иллюстрации приведем графики показательных функций – синяя линия и – красная линия. При других значениях основания, больших единицы, графики показательной функции будут иметь схожий вид.

Свойства показательной функции с основанием большим единицы.

Логарифмическая функция.

Следующей основной элементарной функцией является логарифмическая функция , где , . Логарифмическая функция определена лишь для положительных значений аргумента, то есть, при .

График логарифмической функции принимает различный вид в зависимости от значения основания а .

Координата абсолютно любой точки на плоскости определяется двумя ее величинами: по оси абсцисс и оси ординат. Совокупность множества таких точек и представляет собой график функции. По нему вы видите, как меняется значение Y в зависимости от изменения значения Х. Также вы можете определить, на каком участке (промежутке) функция возрастает, а на каком убывает.

Инструкция

  • Что можно сказать о функции, если ее график представляет собой прямую линию? Посмотрите, проходит ли эта прямая через точку начала отсчета координат (то есть, ту, где величины Х и Y равны 0). Если проходит, то такая функция описывается уравнением y = kx. Легко понять, что чем больше будет значение k, тем ближе к оси ординат будет располагаться эта прямая. А сама ось Y фактически соответствует бесконечно большому значению k.
  • Посмотрите на направлении функции. Если она идет «слева снизу – направо наверх», то есть через 3-ю и 1-ю координатные четверти, она возрастающая, если же «слева сверху – направо вниз» (через 2-ю и 4-ю четверти), то она убывающая.
  • Когда прямая не проходит через начало координат, она описывается уравнением y = kx + b. Прямая пересекает ось ординат в точке, где y = b, и значение y может быть как положительным, так и отрицательным.
  • Функция называется параболой, если описывается уравнением y = x^n, и ее вид зависит от величины n. Если n – любое четное число (простейший случай – квадратичная функция y = x^2), график функции представляет собой кривую, проходящую через точку начала координат, а также через точки с координатами (1;1), (-1;1), поскольку единица в любой степени останется единицей. Все значения y, соответствующие любым значениям X, отличным от нуля, могут быть только положительными. Функция симметрична относительно оси Y, а ее график расположен в 1-й и 2-й координатных четвертях. Легко можно понять, что чем больше величина n, тем приближеннее график будет к оси Y.
  • Если n – нечетное число, график этой функции представляет собой кубическую параболу. Кривая располагается в 1-й и 3-й координатных четвертях, симметрична относительно оси Y и проходит через начало координат, а также через точки (-1;-1), (1;1). Когда квадратичная функция представляет собой уравнение y = ax^2 + bx + c, форма параболы совпадает с формой в простейшем случае (y = x^2), однако ее вершина не находится в точке начала координат.
  • Функция называется гиперболой, если она описывается уравнением y = k/x. Легко можно видеть, что при значении х, стремящемся к 0, значение y возрастает до бесконечности. График функции представляет собой кривую, состоящую из двух ветвей и располагающуюся в разных координатных четвертях.

Важно!

Функцию вида «y = kx + b » называют линейной функцией.

Буквенные множители «k » и «b » называют числовыми коэффициентами .

Вместо «k » и «b » могут стоять любые числа (положительные, отрицательные или дроби).

Другими словами, можно сказать, что «y = kx + b » — это семейство всевозможных функций, где вместо «k » и «b » стоят числа.

Примеры функций типа «y = kx + b ».

  • y = 5x + 3
  • y = −x + 1
  • y = x − 2 k =
    2
    3
    b = −2 y = 0,5x k = 0,5 b = 0

    Обратите особое внимание на функцию «y = 0,5x » в таблице. Часто совершают ошибку при поиске в ней числового коэффициента «b ».

    Рассматривая функцию «y = 0,5x », неверно утверждать, что числового коэффициента «b » в функции нет.

    Числовый коэффициент «b » присутствет в функции типа «y = kx + b » всегда. В функции «y = 0,5x » числовый коэффициент «b » равен нулю .

    Как построить график линейной функции
    «y = kx + b »

    Запомните!

    Графиком линейной функции «y = kx + b » является прямая .

    Так как графиком функции «y = kx + b » является прямая линия , функцию называют линейной функцией .

    Из геометрии вспомним аксиому (утверждение, которое не требует доказательств), что через любые две точки можно провести прямую и притом только одну.

    Исходя из аксиомы выше следует, что чтобы построить график функции вида
    «у = kx + b » нам достаточно будет найти всего две точки.

    Для примера построим график функции «y = −2x + 1 ».

    Найдем значение функции «y » для двух произвольных значений «x ». Подставим, например, вместо «x » числа «0 » и «1 ».

    Важно!

    Выбирая произвольные числовые значения вместо «x », лучше брать числа «0 » и «1 ». С этими числами легко выполнять расчеты.

    Полученные значения «x » и «y » — это координаты точек графика функции.

    Запишем полученные координаты точек «y = −2x + 1 » в таблицу.

    Отметим полученные точки на системе координат.


    Теперь проведем прямую через отмеченные точки. Эта прямая будет являться графиком функции «y = −2x + 1 ».


    Как решать задачи на
    линейную функцию «y = kx + b »

    Рассмотрим задачу.

    Построить график функции «y = 2x + 3 ». Найти по графику:

    1. значение «y » соответствующее значению «x » равному −1; 2; 3; 5 ;
    2. значение «x », если значение «y » равно 1; 4; 0; −1 .

    Вначале построим график функции «y = 2x + 3 ».

    Используем правила, по которым мы выше. Для построения графика функции «y = 2x + 3 » достаточно найти всего две точки.

    Выберем два произвольных числовых значения для «x ». Для удобства расчетов выберем числа «0 » и «1 ».

    Выполним расчеты и запишем их результаты в таблицу.

    Отметим полученные точки на прямоугольной системе координат.

    Соединим полученные точки прямой. Проведенная прямая будет являться графиком функции «y = 2x + 3 ».

    Теперь работаем с построенным графиком функции «y = 2x + 3 ».

    Требуется найти значение «y », соответствующее значению «x »,
    которое равно −1; 2; 3; 5 .

    • Ox » к нулю (x = 0) ;
    • подставить вместо «x » в формулу функции ноль и найти значение «y »;
    • Oy » .

    Подставим вместо «x » в формулу функции «y = −1,5x + 3 » число ноль.

    Y(0) = −1,5 · 0 + 3 = 3


    (0; 3) — координаты точки пересечения графика функции «y = −1,5x + 3 » c осью «Oy ».

    Запомните!

    Чтобы найти координаты точки пересечения графика функции
    с осью «Ox » (осью абсцисс) нужно:

    • приравнять координату точки по оси «Oy » к нулю (y = 0) ;
    • подставить вместо «y » в формулу функции ноль и найти значение «x »;
    • записать полученные координаты точки пересечения с осью «Oy » .

    Подставим вместо «y » в формулу функции «y = −1,5x + 3 » число ноль.

    0 = −1,5x + 3
    1,5x = 3 | :(1,5)
    x = 3: 1,5
    x = 2


    (2; 0) — координаты точки пересечения графика функции «y = −1,5x + 3 » c осью «Ox ».

    Чтобы было проще запомнить, какую координату точки нужно приравнивать к нулю, запомните «правило противоположности».

    Важно!

    Если нужно найти координаты точки пересечения графика с осью «Ox » , то приравниваем «y » к нулю.

    И наооборот. Если нужно найти координаты точки пересечениа графика с осью «Oy » , то приравниваем «x » к нулю.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.