Медицинская биология. Методы генетики Цитогенетический метод используется для

Новейшее медицинское оборудование и современные методики позволяют клиентам частных центров узнать о возможных патологиях в развитии человека еще до его рождения. Цитогенетический метод исследования – анализ, с помощью которого можно установить имеющиеся изменения в хромосомном аппарате. В первую очередь выясняются аномалии в самом наборе хромосом, а также наличие разнообразных структурных перестроек. Такое цитогенетическое исследование чаще всего применяется для своевременной диагностики врожденных и опасных приобретенных заболеваний.

Так, например, в онкологии и, смежной с ней, онкогематологии очень важно вовремя установить тип хромосомных транслокаций, характерный для определенных опухолевых клеток. Установление их наличия позволяет быстро и максимально правильно подобрать тактику лечения. Подобная процедура сложная и многоступенчатая, а результат полностью зависит от опытности персонала и качества оборудования, поэтому не нужно рисковать своей жизнью и пытаться сэкономить на данном анализе. Для каждой отдельной задачи может потребоваться отдельное исследование, поэтому выполнение анализа верно и «с первого раза» очень важно для пациента.

Если необходимо проанализировать не всю хромосомную структуру, а только отдельные последовательности ДНК или РНК, используется молекулярно цитогенетическое исследование . Оно позволяет изучить те или иные гены, а, благодаря своей высокой точности – часто применяется для обнаружения минимальных проявлений остаточных болезней. Например, этот способ рекомендуют для раннего обнаружения опухолевых рецидивов: мелкие лейкемические клетки просто нельзя выявить другими способами на таких ранних сроках. Обычно цитогенетическое исследование крови проводится на основе способа полимеразной цепной реакции. Такая технология позволяет получить большое количество идентичных копий исследуемого участка ДНК. Наличие множества копий открывает дополнительные возможности исследовать последовательность ДНК, как новейшими, так и традиционными способами.

Цитогенетическое исследование кариотип

К стандартным процедурам цитогенетического анализа крови относится кариотипирование. С его помощью выявляют нарушения в количестве и структуре хромосом. Очень важно отдать предпочтение клинике, с качественным оборудованием и расходными материалами. Для анализа кариотип, забор клеток крови держат в питательной среде на протяжении 3 суток. Затем происходит фиксация полученного материала и изучение под микроскопом. На данных этапах нужно тщательно проследить за качеством специальных окрашивающих препаратов и уровнем подготовки персонала.

Существует также цитогенетическое исследование плода , его назначают при различных подозрениях на генетические отклонения или при неправильном раннем внутриматочном развитии. Частные медицинские центры могут обеспечить надлежащий уровень проведения подобных исследований и выявить различные хромосомные патологии, пороки развития, бесплодие или невозможность выносить ребенка на ранних сроках беременности или до нее.

Цитогенетическое исследование костного мозга назначают пациентам с различными видами злокачественных заболеваний в органах системы кроветворения. Во время этого анализа оценивается не менее 20 клеток. Нужно учитывать, что забор материала для исследования должен производиться только в специальном медицинском учреждении, имеющем разрешение на проведение подобных опасных вмешательств.

На ранних сроках беременности может потребоваться цитогенетическое исследование хориона . Его проводят на 10-14 неделе беременности с целью исключения хромосомных болезней плода, таких как синдром Дауна, болезнь Хантера, b-талассемия и еще около 50 различных отклонений и заболеваний. Обратившись в частный центр, клиент может быть уверен в качестве обслуживания и достоверности полученных на современном оборудовании результатов анализов.

Цитогенетическое изучение хромосом человека начали проводить с начала 20-х гг. XX в. Полученные данные позволили разработать и использовать цитогенетический метод при исследовании и диагностике наследственных болезней.

Цитогенетический метод основан на микроскопическом исследовании кариотипа с применением тех или иных способов окрашивания хромосом. Данный метод позволяет проанализировать хромосомный комплекс клеток человека, установить структурные особенности отдельных хромосом, а также выявить нарушения числа и строения хромосом у исследуемого индивидуума. Наличие связи между обнаруженными нарушениями и появлением определенных патологических признаков в фенотипе человека дает возможность диагностировать различные хромосомные заболевания. Помимо диагностики хромосомных наследственных болезней человека, этот метод применяется при изучении закономерностей мутационного процесса и хромосомного полиморфизма человеческих популяций, а также при составлении генетических карт.

Для проведения исследования можно использовать любые ядер- ные клетки, способные к делению (наиболее удобным объектом являются лимфоциты, выделенные из периферической крови), поскольку с помощью световой микроскопии обнаружить и исследовать хромосомы можно лишь во время митотического деления соматических клеток (предпочтительно в метафазе митоза). Необходимый объем периферической крови пациента для анализа - 1-2 мл.

Анализ кариотипа проводят в несколько этапов:

  • ? культивирование клеток на питательной среде с добавлением ФГА (фитогемагглютинина), стимулирующего митотическое деление клеток, в течение 72 часов;
  • ? добавление в среду колхицина, разрушающего нити веретена деления, с целью остановки митоза на стадии метафазы;
  • ? обработка гипотоническим раствором хлорида натрия для разрушения мембранных структур клетки;
  • ? фиксация хромосом на предметном стекле;
  • ? окрашивание хромосом.

Методы окрашивания хромосом: сплошная окраска красителем Романовского - Гимзы (рутинный метод), дифференциальное окрашивание.

После приготовления препарата и окраски хромосом их исследуют с помощью микроскопа. Обнаруженные митотически делящиеся клетки фотографируют для последующего анализа и систематизации.

В результате проделанной работы может быть составлена карио- грамма исследуемого человека в соответствии с международной классификацией.

Рутинный метод окрашивания позволяет относительно легко отнести ту или иную пару гомологичных хромосом к соответствующей группе. Однако использование данного метода, обеспечивающего интенсивное равномерное окрашивание каждой хромосомы, малоинформативно при идентификации хромосом и изучении структурных перестроек.

Более сложные методы - методы дифференциального окрашивания хромосом, условно обозначенные как R-, G-, Q-, С-методы, и способ дифференциального окрашивания хроматид бромдезоксиуриди- ном, при которых окраска распределяется не равномерно по всей длине исследуемой структуры, а в виде отдельных сегментов. Для каждой пары хромосом характерен собственный специфический характер чередования поперечных полос, поэтому дифференциальное окрашивание позволяет выявлять как численные, так и структурные аномалии кариотипа, а также идентифицировать каждую хромосому.

Наиболее часто применяется относительно простой метод окраски по Гимзе (G-окрашивание), который не требует использования флюоресцентного микроскопа. При Q-окрашивании флюоресцентным красителем (акрихином, акрихин-ипритом), с помощью ультрафиолетового излучения, можно дифференцировать Y-хромосому. Характер сегментированности хромосом при Q- и G-окрашиваниях обычно является сходным. При использовании флюорохромов для R-окрашива- ния удается четко определять концевые (теломерные) районы хромосом, при этом картина чередующихся окрашенных и светлых сегментов будет обратной по сравнению с той, которую наблюдают при G- и Q-окрашивании. Для установления локализации околоцентромерно- го и других участков гетерохроматина также применяется специальное окрашивание - С-окрашивание, позволяющее выявлять соответствующий хромосомный полиморфизм. С помощью окраски бромдезокси- уридином можно обнаружить сестринские хроматидные обмены.

Для изучения структурных повреждений каждое плечо окрашенной хромосомы подразделяют на районы, нумерация которых осуществляется в направлении от центромеры к теломере. Отдельные плечи разных хромосом имеют от одного до четырех таких районов. Внутри района выделяют сегменты с разной интенсивностью окраски, которые нумеруются по порядку в указанном выше направлении. Так, символическая запись 1р36 означает, что имеется в виду шестой сегмент третьего района короткого плеча первой хромосомы.

Таким образом, дифференциальное окрашивание позволяет не только достаточно точно выявить утрату или добавление отдельной хромосомы либо ее фрагмента, но и определить от кого из родителей была получена лишняя или мутантная хромосома после дополнительного изучения кариотипа родителей.

Цитогенетический метод с использованием полной схемы карио- типирования применяется как один из обязательных диагностических тестов в следующих случаях:

  • 1) при обследовании детей с врожденными пороками развития;
  • 2) обследовании женщин, у которых наблюдались привычные выкидыши или мертворожденна;
  • 3) проведении дородовой диагностики наследственных заболеваний в случае пожилого возраста матери либо предполагаемого наследования в семье структурных нарушений отдельных хромосом (небольших делеций, транслокаций и др.);
  • 4) для подтверждения диагноза хромосомной патологии, поставленного на основании исследования полового хроматина.

В тех случаях, когда нарушения в кариотипе человека касаются изменения числа половых хромосом, наряду с полным кариотипирова- нием возможно также проведение значительно более простых цитогенетических исследований, связанных с обнаружением тельца полового хроматина в интерфазных ядрах соматических клеток человека. Половой хроматин (Х-хроматин, или тельце Барра) представляет собой одну из двух Х-хромосом индивидуумов женского пола, которая в норме инактивируется (гетерохроматинизируется) уже в раннем периоде эмбрионального развития.

Наиболее простой и быстрый по времени метод определения полового хроматина связан с окраской ацеторсеином клеток слизистой оболочки полости рта, полученных путем соскоба с внутренней поверхности щеки при помощи шпателя. Материал соскоба распределяют по поверхности предметного стекла и на 1-2 мин наносят краситель. Затем покрывают препарат покровным стеклом и, слегка нажимая на него, удаляют остаток красителя фильтровальной бумагой. Окрашенный препарат изучают с помощью светового микроскопа с иммерсионным объективом. При этом половой хроматин выявляется под ядерной оболочкой клетки в виде плотного образования (тельца) различной формы, чаще всего овальной или треугольной (рис. 7.4).

В норме половой хроматин обнаруживается в ядрах большинства клеток (50-70%) у лиц женского пола, тогда как у индивидуумов мужского пола он встречается очень редко (0-5% всех клеток). При изменении

Рис. 7.4.

числа Х-хромосом в кариотипе индивидуума меняется и содержание полового хроматина в его клетках. Связь между количеством Х-хромосом (N) и числом телец полового хроматина (п) можно выразить в виде формулы п = N - 1. Так, в клетках женщин с синдромом Шерешевского - Тернера (моносомия X, кариотип 45,X) ядра не содержат полового хроматина, тогда как в случае трисомии X (47,XXX) в ядрах большинства клеток обнаруживаются два тельца полового хроматина (см. рис. 7.4).

Определение содержания Х-хроматина в клетках человека в клинической практике обычно проводят в следующих ситуациях:

  • ? при цитологической диагностике пола в случаях его реверсии (гермафродитизм);
  • ? с целью установления пола будущего ребенка в процессе дородовой диагностики (при высоком риске заболевания, сцепленного с полом);
  • ? для предварительной диагностики наследственных заболеваний, связанных с нарушением числа половых хромосом.

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

  • 1. При изучении фотокопии хромосомного комплекса человека были проведены измерения и определены следующие относительные размеры короткого (р) и длинного (q) плеча отдельных хромосом (р / q):
    • ? 3,1/4,9;
    • ? 1,7/4,3;
    • ? 1,7/3,3;
    • ? 0,6/3,0;
    • ? 1,2/2,1;
    • ? 0,6/1,4.

Рассчитайте центромерный индекс (в %) для каждой из указанных выше хромосом исследуемого кариотипа по формуле р / (р + q).

  • 2. Сделайте заключение о возможном кариотипе индивидуума, имеющего следующие особенности:
    • ? фенотип женский, более 50% соматических клеток имеют одно тельце полового хроматина;
    • ? фенотип женский, менее 5% клеток имеют одно тельце полового хроматина;
    • ? фенотип женский, более 50% клеток имеют два тельца полового хроматина;
    • ? фенотип мужской, менее 5% клеток имеют одно тельце хроматина;
    • ? фенотип мужской, более 50% клеток имеют одно тельце полового хроматина;
    • ? фенотип мужской, более 50% клеток имеют два тельца Барра.
  • 3. Определите, какое число телец полового хроматина можно обнаружить в большинстве интерфазных ядер людей со следующими кариотипами: 46,XX, 46,XY, 47.XXY, 48.XXXY, 45,X, 47,XXX, 48.ХХХХ, 49.ХХХХХ.
  • 4. У фенотипически мужского организма проведено определение полового хроматина в клетках слизистой оболочки щеки. Укажите, при каком уровне содержания хроматина можно подозревать патологию: 0%, 60%, 2,5%.
  • 5. Внесите информацию в незаполненные колонки таблицы, обозначив (знаком

Цитогенетическое исследование - это микроскопический анализ хромосом, результаты которого весьма важны для постановки диагноза, классификации, лечения и научного исследования заболеваний системы крови, прежде всего - онкогематологических. Значение цитогенетических методов для диагноза и лечения определяется доступностью опухолевых клеток для кариотипирования и их гетерогенностью, а с научной точки зрения - возможностью изучения изменений в структуре и функции генетических локусов, ассоциированных со злокачественной трансформацией.

Морфология хромосом сильно варьирует во время клеточного цикла. Для микроскопического анализа хромосомы должны быть визуализированы как дискретные структуры. Наилучшим образом это достигается на стадии прометафазы митоза, когда каждая хромосома видна как две идентичные хроматиды, и особенно на стадии метафазы, когда хромосомы максимально конденсированы и располагаются в одной плоскости в центре клетки отдельно одна от другой.
Нормальные клетки человека содержат 22 пары аутосом и одну пару половых : две Х-хромосомы у женщин и по одной копии половых хромосом (X и Y) у мужчин.

Для цитогенетического анализа лейкозов , миелодиспластических синдромов и хронических миелопролиферативных заболеваний исследуют клетки костного мозга. При невозможности их получения может быть исследована кровь (если она содержит бласты). Цитогенетический анализ лимфом выполняется в клетках ткани лимфатического узла. Культивирование клеток из опухоли повышает митотический индекс (пропорцию клеток, находящихся в фазе митоза) и способствует пролиферации злокачественных клеток.

Сравнительное кариотипирование нормальных клеток проводят в Т-лимфоцитах периферической крови, которые предварительно культивируют в среде с митогеном растительного происхождения - фитогемагглютинином.

Окрашивание хромосом в гематологии

В конце 1960-х годов была разработана методология дифференциального окрашивания метафазных хромосом , а в 1971 г. создана номенклатура хромосомных сегментов, позволяющая точно описывать хромосомные аномалии. Позднее были внедрены методики окрашивания менее конденсированных и, соответственно, более длинных профазных и прометафазных хромосом, которые обладают более высоким разрешением, так как позволяют визуализацию 500-2000 сегментов (метафазное окрашивание визуализирует только 300 сегментов).

Достаточно большое количество профазных и прометафазных клеток для анализа получают путем синхронизации клеточного цикла, культивируя клетки в среде, содержащей антиметаболит (например, метотрексат), который ингибирует синтез ДНК. Подавление синтеза ДНК останавливает клеточный цикл в интерфазе. Затем клетки переносят в среду без метотрексата, обогащенную тимидином, где они одновременно входят в фазу митоза. Обработка клеточной культуры колхицином останавливает митоз одновременно во всех клетках на стадии профазы или прометафазы.

Первая стойкая хромосомная аномалия при злокачественной опухоли человека была выявлена в 1960 г. у больных хроническим миелолейкозом и получила название филадельфийской хромосомы (Ph), по имени города, в котором было сделано это открытие. Применение технологии хромосомного окрашивания позволило выявить множество хромосомных аномалий, большая часть которых встречается при онкогематологических заболеваниях. Некоторые красители окрашивают различные участки хромосом с вариабельной интенсивностью в зависимости от структуры хроматина в этих участках, их нуклеотидного и белкового состава.

В результате такого окрашивания получают уникальный паттерн чередования светлых и темных поперечных полос, специфичный для каждой хромосомы.

В настоящее время существуют несколько видов дифференциального окрашивания хромосом . При Q-окрашивании акрихин-ипритом (quinacrine) или акрихиндигидрохлоридом выявляется особый тип флюоресценции каждой хромосомы с образованием Q-исчерченности (Q-banding) - поперечных флюоресцентных полос, называемых Q-полосами (Q.-bands). Это позволяет идентифицировать отдельные хромосомы. Анализ Q-полос выполняют с помощью флюоресцентного микроскопа.

Схема анализа ДНК методом FISH

При окрашивании по Гимзе (G-banding) хромосомы приобретают вид серии темных и светлых полос или бэндов (bands). G-окрашивание применяется чаще, чем Q-окрашивание, так как анализ выполняется с помощью светового микроскопа, а G-полосы, в отличие от Q-полос, не выцветают со временем. Наиболее широко применяется методика, называемая GTG-окрашиванием (G bands by trypsin using Giemsa), с предварительной обработкой трипсином.

R-бэндинг (обработка хромосом горячим спиртовым раствором перед окрашиванием по Гимзе) выявляет полосы, которые обратны G-полосам и называются R-полосами (reverse of G bands).

Помимо Q-, G- и R-окрашивания , позволяющих выявлять полосы вдоль всей длины хромосомы, существуют методики, специализированные для исследования отдельных хромосомных структур, в том числе конститутивного гетерохроматина (С-окрашивание - от англ. constitutive), теломерного района (Т-окрашивание) и района ядрышкового организатора (NOR-окрашивание - от англ. nucleolus organizing region). Размеры и положение С-полос уникальны для каждой хромосомы, но преимущественно они включают центромерныи район и используются при исследовании хромосомных транслокаций, вовлекающих центромерные районы хромосом.

Цитогенетический анализ опухолевых клеток затруднен в связи с неясной морфологией хромосом и слабой различимостью полос. Если в исследование взяты наиболее удобные для анализа метафазные пластинки, образец может быть ошибочно охарактеризован как цитогенетически нормальный.

С развитием методов рекомбинантной ДНК стало возможным использование гибридизации in situ для определения местоположения на хромосомах или в клеточном ядре любой ДНК- и РНК-последовательности. С ее помощью можно изучать и диагностировать онкологические и наследственные генетические болезни. Молекулярная гибридизация in situ является важным инструментом цитогенетических исследований, позволяет выявлять хромосомные перестройки, идентифицировать маркерные хромосомы, проводить быстрое кариотипирование клеточных линий. Важно, что подобный анализ можно проводить не только на метафазных хромосомах, но и на интерфазных ядрах.

Разрешающая способность «интерфазной цитогенетики» на два порядка выше, чем классической цитогенетики.

Несмотря на многоцелевое использование молекулярной гибридизации ДНК-ДНК (РНК) in situ , все модификации метода выполняются в соответствии с общими принципами. Существуют несколько вариантов, которые включают в себя несколько этапов: подготовка и мечение ДНК (РНК)-зонда, приготовление препаратов хромосом, собственно гибридизация, детекция гибридных молекул.

В 1980-х годах цитогенетическая методология обогатилась молекулярно-цитогенетическим методом, называемым флюоресцентной гибридизацией in situ (fluorescence in situ hybridization , FISH ), который вскоре стал наиболее популярным. Суть этого метода заключается в гибридизации ДНК-зондов к специфическим последовательностям ДНК, меченных флюорохромами, с метафазными или интерфазными хромосомами, которые визуализируются флюоресцентной микроскопией. Определение нуклеотидной последовательности методом FISH выполняется непрямым способом, путем гибридизации синтетического олигонуклеотида (зонда) с анализируемой ДНК (называемой также матричной ДНК или ДНК-мишенью).

Если зонд синтезирован с включением флюоресцентных или антигенных молекул, которые распознаются флюоресцирующими антителами , становится возможной визуализация относительного положения зонда на анализируемой ДНК.

Флюорохром может быть связан с ДНК ковалентно (прямое мечение) или посредством иммуноцитохимических реакций, когда ДНК-зонд метят гаптеном (биотин, дигоксигенин), а флюорохром связан с алкалоидом авидином (стрептавидином), обладающим сильным сродством к биотину (или с антителами против биотина или дигоксигенина). При использовании гаптенов возможна амплификация флюоресцентного сигнала с помощью биотинилированных антител к авидину и вторичных антител, специфичных предыдущему слою антител и окрашенных флюорохромом.

Для амплификации флюоресцентного сигнала применяется метод «иммунных сэндвичей». Например, на препарат, изображенный на схеме, наносят биотинилированные антитела к авидину, а затем снова комплекс авидин-флюоресцеин. При необходимости цикл может быть повторен. Антитела в свою очередь выявляются с помощью ферментативного (например, авидинпероксидазы) или флюоресцентного детектора.

Метод FISH предназначен для выявления:
1) гибридных клеток;
2) транслокаций и других, в том числе числовых, хромосомных аномалий;
3) меченых хромосом в интерфазных и метафазных клетках.

Высококонтрастная флюоресцентная гибридизация достигается благодаря использованию флюоресцентных красителей разного цвета. С помощью двуцветной FISH выявляются тонкие структурные аномалии, например хромосомные транслокации, в том числе и неразличимые при дифференциальном окрашивании.

В настоящее время возможно выполнение многоцветной гибридизации in situ для одновременного окрашивания всех хромосом в сложном кариотипе с множественными числовыми и структурными аномалиями. Комбинация разных модифицирующих агентов и флюорохромных красителей позволяет одновременно выявлять несколько последовательностей ДНК в одном ядре (флюоресцеин дает зеленую флюоресценцию, техасский красный и родамин - красную, гидроксикумарин - голубую и т. д.). Сочетание пяти флюорохромов в разных пропорциях и компьютерный анализ изображений позволяет одновременно окрасить разным цветом все хромосомы и визуализировать 27 различных ДНК-зондов, которые служат уникальной меткой для каждой хромосомы. Эта методика называется многоцветной FISH (multicolor, или multiplex, fluorescence in situ hybridization, M-FISH).

Значение цитогенетических методов неодинаково при разных онкогематологических заболеваниях. Миелоидные клетки обычно легко кариотипируются при дифференциальном окрашивании, и FISH лишь подтверждает результаты рутинной цитогенетики. Лимфоидные клетки у больных хроническим лимфолейкозом и, особенно, множественной миеломой кариотипировать значительно сложнее из-за низкого уровня пролиферации (даже при использовании В-клеточных митогенов). В этом случае FISH демонстрирует в несколько раз большую частоту анеуплоидии, чем обычные цитогенетические методики.

Клиническое значение цитогенетических исследований

Диагноз . Потомство клетки с приобретенной цитогенетической аномалией может иметь пролиферативное преимущество и давать начало клону - клеточной популяции, происходящей от одной клетки-предшественницы. Обнаружение клональных хромосомных аномалий способствует постановке диагноза клонального поражения костного мозга. Например, цитогенетический анализ позволяет установить диагноз миелодиспластического синдрома у пациентов с умеренной цитопенией или при наличии в аспирате костного мозга минимально выраженных качественных нарушений гемопоэза.

Метод позволяет идентифицировать кариотип (особенность строения и число хромосом), путем записи кариограммы. Цитогенетическое исследование проводится у пробанда, его родителей, родственников или плода при подозрении на хромосомный синдром либо другое хромосомное нарушение.

Для определения кариотипа используют как прямые, так и непрямые методы исследования. В первом случае материал, взятый из костного мозга, лимфатических узлов, эмбриональных тканей, хориона, клеток амниотической жидкости или других тканей, изучают сразу же после получения. Однако прямой метод информативен только тогда, когда в материале имеется достаточное количество метафаз митоза, так как только в этой фазе хромосомы приобретают присущие им особенности строения и возможна их точная идентификация. В настоящее время широко применяются непрямые методы исследования.

Метод приготовления метафазных пластин. Взятую культуру (лимфоциты периферической крови и др.) помещают в питательную среду для культивирования. В норме в периферической крови не наблюдается митоза лимфоцитов, поэтому используют препараты (фитогемагглютинин), стимулирующие иммунологическую трансформацию лимфоцитов и их деление. Вторым этапом является остановка митотического деления клетки на стадии метафазы. Достигается это путем добавления в культуру тканей за 2-3 часа до окончания культивирования препаратов колхицин или колцимед. На третьем этапе, используя гипотонический раствор хлорида кальция или цитрат натрия, добиваются гипотонизации клеток, в результате чего клетка набухает, ядерная оболочка разрывается, межхромосомные связи рвутся, и хромосомы свободно плавают в цитоплазме. Далее полученная культура фиксируется смесью метанола и уксусной кислоты, центрифугируется и меняется фиксатор. Суспензия с фиксатором наносится на чистое предметное стекло, где метафазная пластинка расправляется и в ее пределах располагаются отдельно лежащие хромосомы. По мере высыхания фиксатора, клетка прочно прикрепляется к стеклу. Таким образом, независимо от культуры клеток, из которых были получены метафазные пластинки общий принцип получения препаратов следующий: накопление метафаз, гипотонизация, фиксация, раскапывание на предметное стекло.

Окраска препарата. Окраска препаратов является следующей стадией после получения метафазных пластин и делится на простые, дифференцированные и флюоресцентные. Каждая из видов окрашивания применяется для выявления только определенных изменений кариотипа. При простой окраске (метод окраски по Гимзе), возможно лишь групповая идентификация хромосом, поэтому данный метод используется для ориентировочного определения числовых аномалий кариотипа. Простая окраска широко применяется для изучения хромосомного мутагенеза при проверке факторов окружающей среды на мутантность. Краситель Гимзы окрашивает все хромосомы равномерно по всей длине, контурируя при этом центромеру, спутники и вторичные перетяжки. Дифференциальное окрашивание обусловлено способностью к избирательному окрашиванию по длине и обеспечивается сравнительно простыми температурно-солевыми воздействиями на фиксированные хромосомы. При этом выявляется структурная дифференцировка хромосом по длине, выражающееся в виде чередования эу- и гетерохроматических районов (темные и светлые), которые специфичны для каждой хромосомы, соответствующего плеча и района. Наиболее часто используется G-окраска. При этом хромосомы предварительно обрабатываются протеазой или солевым раствором. Для изучения мутационного процесса у человека широко используется метод дифференциальной окраски сестринских хроматид, основанный на способности включатся в последовательность репликации хромосомы аналога тимидина-5-бромдезоксиуридина. Участки хромосомы, включившие этот аналог, окрашиваются плохо, поэтому используя этот метод можно идентифицировать любую хромосому или хромосомную перестройку.

Исследование полового хроматина. Метод определения полового хроматина быстрее и проще, чем исследование набора хромосом (кариотипа), поэтому он применяется в качестве одного из скрининг-тестов при массовых обследованиях населения. В норме в клетках женского организма при определенных способах окраски вблизи ядерной мембраны образуется интенсивно окрашиваемое тельце - половой хроматин, или тельце Барра, которое образуется одной, неактивной Х-хромосомой. Другая Х-хромосома в клетках женского организма является активной. У мужчин имеется лишь одна Х-хромосома, и она всегда активна, поэтому в ядрах клеток мужского организма половой хроматин не определяется. Для исследования полового хроматина Х обычно берут соскоб со слизистой полости рта. Наиболее распространен экспресс-метод окраски по Сандерсу с использованием 2% раствора уксуснокислого ацетоорсеина с последующей иммерсионной микроскопией. Кроме того, в зрелых нейтрофилах крови выявляется еще и так называемая барабанная палочка, причем телец хроматина и барабанных палочек на единицу меньше числа Х-хромосом. В нейтрофилах у мужчин выявляются также околоядерные образования в виде «ниточек» и «волосков». Исчезновение у женщин неактивной Х-хромосомы ведет к отсутствию полового хроматина. Появление у мужчины дополнительной Х-хромосомы приводит к формированию тельца полового хроматина.

Показания для цитогенетического обследования больного:

  • 1) множественные пороки развития (с вовлечением трех и более систем); наиболее постоянные нарушения - пороки рзвития головного мозга, опорно-двигательной системы, сердца и мочеполовой системы;
  • 2) умственная отсталость в сочетании с нарушениями физического развития, дисплазиями, гипогенитализмом;
  • 3) стойкое первичное бесплодие у мужчин и у женщин при исключении гинекологической и урологической патологии;
  • 4) привычное невынашивание беременности, особенно на ранних стадиях;
  • 5) нарушение полового развития (гипогонадизм, половые инверсии);
  • 6) небольшая масса ребенка, рожденного при доношенной беременности.

Применение цитогенетического метода в клинической генетике обусловило развитие нового направления - клинической цитогенетики, которая позволяет:

  • - установить происхождение структурно перестроенных хромосом и их точную классификацию;
  • - выделить синдромы, обусловленные дисбалансом по участкам индивидуальных хромосом;
  • - накапливать сведения об изменениях хромосом в опухолевых клетках, у больных с наследственными заболеваниями крови и т.д.

Для качественной своевременной диагностики врожденных заболеваний, предрасположенности к онкологическим патологиям используется цитогенетическое исследование.

С помощью современных методик и новейшего оборудования изучается хромосомный набор плода.

Найденные аномалии в хромосомном аппарате позволят выявить и предотвратить возможные патологии еще до рождения ребенка.

Данная процедура отличается сложностью и многоступенчатостью, поэтому для решения каждой отдельной диагностической задачи требуется свое цитогенетическое специализированное обследование.

Цитогенетическое исследование изучает связи между наследственными факторами и ядерными структурами соматических клеток человека.

Данные методы анализа широко используются в биологии и медицине для определения происхождения, эволюции, изменчивости живых существ на протяжении филогенеза и онтогенеза.

Особое внимание уделяется индивидуальным генетическим особенностям. Именно поэтому главным предметом, с которым работает цитогенетический метод исследования, является хромосомный набор человека, животных и растений.

Изменения в хромосомах, передаваясь по наследству, определяют признаки организма, его подверженность различным заболеваниям, устойчивость к неблагоприятным факторам внешней среды.

Именно хромосомы определяют передачу некоторых заболеваний, поэтому по их набору и структурным изменениям можно увидеть предрасположенность конкретного человека к развитию онкологических и других тяжелых болезней.

Разнообразные структурные перестройки хромосом, аномалии хромосомного набора выявляет цитогенетический анализ и исследование.

Такие методики применяются для современной диагностики опасных заболеваний на начальных стадиях их развития.

На ранних стадиях беременности применение цитогенетического исследования хромосом плода позволяет определить пол будущего ребенка на клеточном уровне.

Высокотехнологичное оборудование последнего поколения, проверенные методики исследования позволяют обнаруживать и предотвращать онкологические заболевания и генетические патологии.

Точная диагностика дает возможность определить наиболее оптимальную тактику лечения, которая будет способствовать положительному терапевтическому результату.

Успешность такой процедуры зависит от качества, точности оборудования, квалификации, опыта медицинского персонала.

Точные данные анализа хромосом определяют успешность всего последующего лечения, поэтому необходимо стараться с первого раза получить правильные результаты.

Иногда данный вид диагностики оказывается единственно возможным. Эта технология исследования позволяет создать большое количество копий ДНК, которые исследуются различными способами, повышая достоверность результатов.

Выявленная на ранних стадиях болезнь лечится намного легче, а эффективная быстрая терапия зачастую спасает жизнь.

Исследование кариотип

Хромосомный набор (кариотип) изучается несколькими способами, которые используют различный биологический материал для анализов.

Исследование кариотип чаще всего работает с венозной кровью, которая смешивается в пробирке с литием и гепарином.

Забор крови производится в количестве 2 мл, после чего она содержится внутри питательной среды на протяжении 3 суток. Только после этого полученный материал фиксируется и исследуется под микроскопом.

За месяц до анализа хромосом следует отказаться от приема антибиотиков, кроме того, такие процедуры не проводятся при простудных заболеваниях.

Исследования кариотипа (кариотипирование) анализирует с помощью методики световой микроскопии форму, размер, число хромосом, используя специальное окрашивание. Нормальные показатели у мужчин обозначаются 46,XY, а у женщин – 46,XX.

Кариотипирование исследует структурные аномалии генетического материала, которые связаны с разрывами хромосом. Эти разрушения компенсируются с помощью различных нездоровых аномальных комбинаций.

С развитием современной медицинской техники появляются новые цитогенетические методики исследования, которые эффективно идентифицируют такие патологические изменения хромосом.

Если существуют подозрения на генетические отклонения в развитии эмбриона человека, то отдельно производится цитологический анализ плода.

Современные медицинские центры с хорошим оборудованием и квалифицированным персоналом выявляют различные пороки развития, хромосомные болезни, с достаточно высокой точностью определяют возможности благополучно выносить ребенка.

Если есть подозрения на онкологические заболевания органов системы кроветворения, то назначается цитологическое исследование костного мозга.

Такие анализы проводятся только в медицинских учреждениях, которые имеют специальное оборудование и квалифицированный персонал.

Это вызвано тем, что забор биологического материала для анализа и исследования связан с опасностью для здоровья и жизни.

С целью исключения хромосомных заболеваний плода на 3-4 месяце беременности проводится анализ хориона, который исследует не менее 20 клеток системы кроветворения.

Такое тестирование поможет предвидеть такие патологии, как болезнь Хантера, синдром Дауна и многие другие заболевания.

Изменение набора хромосом при онкологических процессах может быть использовано для ранней диагностики рака, поэтому диагностические исследования на цитологическом уровне активно развиваются с ростом технического прогресса.

Задачи анализа кариотипа и его виды

Подробное изучение кариотипа проводится для решения следующих конкретных задач:

  • уточнения диагностического основания для назначения оптимального лечения онкологических заболеваний;
  • выявления причины врожденных заболеваний ребенка на генетическом уровне;
  • нахождение генетических причин выкидыша, женского бесплодия;
  • выявление последствий воздействия вредных факторов на работе;
  • обнаружения аномальных хромосом у плода.

Таким образом, показаниями к проведению подобного анализа являются бесплодие, прерывание беременности, подозрение на хромосомные патологии, отсутствие менструаций у женщин половозрелого возраста, нарушения и задержки полового развития.

Хромосомные аномалии у плода нередко могут становиться причиной неразвивающейся беременности.

В зависимости от уровней проведения анализ кариотипа бывает двух видов:

  • обычным;
  • молекулярным.

Если нарушение нормального кариотипа происходит на ранних стадиях полового развития человека, то при слиянии половых клеток и образовании зиготы такие аномалии сохраняются.

В дальнейшем развитии эмбрион сохраняет патологические неправильные хромосомы. Такое положение приводит к патологическим изменениям индивидуального развития, которые нередко оказываются нежизнеспособными.

Однако бывает положение, когда изначально при делении зиготы развивается несколько линий делений клеток, которые имеют разные кариотипы. Это позволяют выявить обычные цитогенетические методы исследования.

Молекулярное кариотипирование является самым современным методом исследования генома человека. С помощью такого анализа появилась возможность выявлять различные вариации числа копий генов.

Такие патологии характеризуются потерями участков молекул ДНК, которые содержат важную генетическую информацию. Все это приводит к умственной отсталости, эпилепсии, раку, аутизму.

С помощью этого метода можно достаточно точно определить гены, которые находятся в области перестройки, выяснить их непрямой или непосредственный вклад на развитие генетических заболеваний.

На сегодняшний день этот метод является важнейшим инструментом для постановки точного диагноза большинства генетических патологий.

Процедура кариотипирования

Набор внутри соматических клеток организма, состоящий из 23 пар хромосом, одна из которых передается от матери, а другая – от отца, представляет собой кариотип человека.

Для проведения анализа кариотипа используются любые клетки, которые могут быть получены из крови, костного мозга, эпителия человека.

На протяжении клеточного цикла внешний вид хромосом значительно меняется. На одних стадиях митоза они располагаются внутри ядра, не имеют спиральной формы, а на других образуется спиральная структура большего размера.

Наиболее подходящий для внешнего наблюдения этап клеточного деления – метафаза. Именно на этой стадии можно проводить микроскопическое исследование хромосом.

Исследовательская процедура проводится в следующем порядке:

  1. Митоз останавливается на стадии метафазы и с помощью добавления колхицина, который фиксирует незаконченный процесс деления клеток, выделенная клеточная структура обогащается;
  2. Такие клетки окрашиваются, фиксируются, после чего их фотографируют под микроскопом;
  3. Полученные фотографии гомологичных хромосом систематизируются и выкладываются в определенном порядке.

С появлением методов дифференциальной окраски хромосом стала возможна их более подробная детализация при микроскопическом исследовании. Со временем эта методология совершенствовалась и развивалась.

Сдать анализ на определение кариотипа можно во многих специализированных клиниках. При этом такая процедура может проводиться в двух вариантах.

В первом случае анализируются количественные и структурные изменения хромосом, полученных от родителей.

Во втором анализируются внутренние мутации хромосом под влиянием неблагоприятных внешних факторов.

Нередко кариотипирование назначается супругам для определения причин бесплодия. При этом сдача биологического материала на анализ может происходить в разное время.

Таким образом, анализ кариотипов имеет большое значение в медицине, поскольку позволяет определять хромосомные перестройки, нарушения их структуры и порядка.

Цитогенетические обследования диагностируют ряд генетических заболеваний, которые напрямую связаны с хромосомами.