Сила лоренца f. Сила лоренца и ее воздействие на электрический заряд

  • Определение силы Лоренца

    Определение силы Лоренца

    Сила Лоренца представляет собой комбинацию магнитной и электрической силы на точечном заряде, который вызван электромагнитными полями. Или другими словами, сила Лоренца – это сила, действующая на всякую заряженную частицу, которая падает в магнитном поле с определенной скоростью. Ее величина зависит от величины магнитной индукции В , электрического заряда частицы q и скорости, с которой частица падает в поле – V . О том какая формула расчета силы Лоренца, а также ее практическое значение в физике читайте далее.

    Немного истории

    Первые попытки описать электромагнитную силу были сделаны еще в XVIII веке. Ученые Генри Кавендиш и Тобиас Майер высказали предположение, что сила на магнитных полюсах и электрически заряженных объектах подчиняется закону обратных квадратов. Однако экспериментальное доказательство этого факта не было полным и убедительным. Только в 1784 году Шарль Августин де Кулон при помощи своего торсионного баланса смог окончательно доказать это предположение.

    В 1820 году физиком Эрстедом был открыт факт, что на магнитную стрелку компаса действует ток вольта, а Андре-Мари Ампер в этом же году смог разработать формулу угловой зависимости между двумя токовыми элементами. По сути, эти открытия стали фундаментом современной концепции электрических и магнитных полей. Сама же концепция получила свое дальнейшее развитие в теориях Майкла Фарадея, особенно в его представлении о силовых линиях. Лорд Кельвин и Джеймс Максвелл дополнили теории Фарадея подробным математическим описанием. В частности Максвеллом было создано так званное, «уравнение поля Максвелла» – представляющее собой систему дифференциальных и интегральных уравнений, описывающих электромагнитное поле и его связь с электрическими зарядами и токами в вакууме и сплошных средах.

    Джей Джей Томпсон был первым физиком, кто попытался вывести из уравнения поля Максвелла электромагнитную силу, которые действует на движущийся заряженный объект. В 1881 году он опубликовал свою формулу F = q/2 v x B. Но из-за некоторых просчетов и неполного описания тока смещения она оказалась не совсем правильной.

    И вот, наконец, в 1895 году голландский ученый Хендрик Лоренц вывел правильную формулу, которая используется и поныне, а также носит его имя, как и та сила, что действует на летящую частицу в магнитном поле, отныне называется «силой Лоренца».

    Формула силы Лоренца

    Формула для расчета силы Лоренца выглядит следующим образом:

    Где q – электрический заряд частицы, V – ее скорость, а B – величина магнитной индукции магнитного поля.

    При этом поле B выступает в качестве силы, перпендикулярной к направлению вектора скорости V нагрузок и направлению вектора B. Это можно проиллюстрировать на диаграмме:

    Правило левой руки позволяет физикам определять направление и возврат вектора магнитной (электродинамической) энергии. Представьте себе, что наша левая рука расположена таким образом, что линии магнитного поля направлены перпендикулярно внутренней поверхности руки (так, что они проникают внутрь руки), а все пальцы за исключением большого указывают на направление протекания положительного тока, отклоненный большой палец указывает на направление электродинамической силы, действующий на положительный заряд, помещенный в это поле.

    Вот так это будет выглядеть схематически.

    Есть также и второй способ определения направления электромагнитной силы. Он заключается в расположении большого, указательного и среднего пальцев под прямым углом. В этом случае указательный палец будет показывать направление линий магнитного поля, средний – направление движение тока и большой – направление электродинамической силы.

    Применение силы Лоренца

    Сила Лоренца и ее расчеты имеет свое практическое применение при создании как специальных научных приборов – масс-спектрометров, служащих для идентификации атомов и молекул, так и создании многих других устройств самого разнообразного применения. Среди устройств есть и электродвигатели, и громкоговорители, и рельсовые пистолеты.

  • ОПРЕДЕЛЕНИЕ

    Сила Лоренца – сила, действующая на точечную заряженную частицу, движущуюся в магнитном поле.

    Она равна произведению заряда, модуля скорости частицы, модуля вектора индукции магнитного поля и синуса угла между вектором магнитного поля и скоростью движения частицы.

    Здесь – сила Лоренца, – заряд частицы, – модуль вектора индукции магнитного поля, – скорость частицы, – угол между вектором индукции магнитного поля и направления движения.

    Единица измерения силы – Н (ньютон) .

    Сила Лоренца — векторная величина. Сила Лоренца принимает своё наибольшее значение когда векторы индукции и направления скорости частицы перпендикулярны ().

    Направление силы Лоренца определяют по правилу левой руки:

    Если вектор магнитной индукции входит в ладонь левой руки и четыре пальца вытянуты в сторону направления вектора движения тока, тогда отогнутый в сторону большой палец показывает направление силы Лоренца.

    В однородном магнитном поле частица будет двигаться по окружности, при этом сила Лоренца будет центростремительной силой. Работа при этом не будет совершаться.

    Примеры решения задач по теме «Сила Лоренца»

    ПРИМЕР 1

    ПРИМЕР 2

    Задание Под действием силы Лоренца частица массы m с зарядом q движется по окружности. Магнитное поле однородно, его напряжённость равна B. Найти центростремительное ускорение частицы.

    Решение Вспомним формулу силы Лоренца:

    Кроме того, по 2 закону Ньютона:

    В данном случае сила Лоренца направлена к центру окружности и ускорение, ею создаваемое, направлено туда же, то есть это и есть центростремительное ускорение. Значит:

    Силой Лоренца называют силу, которая действует со стороны электромагнитного поля на движущийся электрический заряд. Весьма нередко силой Лоренца называют лишь магнитную составляющую этого поля. Формула для определения:

    F = q(E+vB),

    где q — заряд частицы; Е — напряжённость электрического поля; B — магнитная индукция поля; v — скорость частицы.

    Сила Лоренца очень похожа по своему принципу на , разница заключается в том, что последняя действует на весь проводник, который в целом электрически нейтральный, а сила Лоренца описывает влияние электромагнитного поля лишь на единичный движущийся заряд.

    Она характеризуется тем, что не изменяет скорость перемещения зарядов, а лишь воздействует на вектор скорости, то есть способна изменять направление движения заряженных частиц.

    В природе сила Лоренца позволяет защищать Землю от воздействия космической радиации. Под её воздействием падающие на планету заряженные частицы отклоняются от прямой траектории благодаря присутствию магнитного поля Земли, вызывая полярные сияния.

    В технике сила Лоренца используется очень часто: во всех двигателях и генераторах именно она приводит во вращение ротор под действием электромагнитного поля статора.

    Таким образом, в любых электромоторах и электроприводах основным видом силы является Лоренцева. Кроме того, она применяется в ускорителях заряженных частиц, а также в электронных пушках, которые раньше устанавливались в ламповых телевизорах. В кинескопе испускаемые пушкой электроны отклоняются под влиянием электромагнитного поля, что происходит при участии Лоренцевой силы.

    Кроме того, эта сила используется в масс-спектрометрии и масс-электрографии для приборов, способных сортировать заряженные частицы в зависимости от их удельного заряда (отношение заряда к массе частицы). Это позволяет с высокой точностью определять массу частиц. Также находит применение в других КИП, например, в бесконтактном способе измерения расхода электропроводящих жидких сред (расходомеры). Это очень актуально, если жидкая среда обладает очень высокой температурой (расплав металлов, стекла и др.).

    Возникновение силы, действующей на электрический заряд, движущийся во внешнем электромагнитном поле

    Анимация

    Описание

    Силой Лоренца называетсясила, действующая на заряженную частицу, движущуюся во внешнем электромагнитном поле.

    Формула для силы Лоренца (F ) была впервые получена путем обобщения опытных фактов Х.А. Лоренцем в 1892 г. и представлена в работе «Электромагнитная теория Максвелла и ее приложение к движущимся телам». Она имеет вид:

    F = qE + q, (1)

    где q - заряженная частица;

    Е - напряженность электрического поля;

    B - вектор магнитной индукции, не зависящий от величины заряда и скорости его движения;

    V - вектор скорости заряженной частицы относительно системы координат, в которой вычисляются величины F и B .

    Первый член в правой части уравнения (1) - сила, действующая на заряженную частицу в электрическом поле F Е =qE, второй член - сила, действующая в магнитном поле:

    F м = q. (2)

    Формула (1) универсальна. Она справедлива как для постоянных, так и для переменных силовых полей, а также для любых значений скорости заряженной частицы. Она является важным соотношением электродинамики, так как позволяет связать уравнения электромагнитного поля с уравнениями движения заряженных частиц.

    В нерелятивистском приближении сила F , как и любая другая сила, не зависит от выбора инерциальной системы отсчета. Вместе с тем магнитная составляющая силы Лоренца F м изменяется при переходе от одной системы отсчета к другой из-за изменения скорости, поэтому будет изменяться и электрическая составляющая F Е . В связи с этим разделение силы F на магнитную и электрическую имеет смысл только с указанием системы отсчета.

    В скалярной форме выражение (2) имеет вид:

    Fм = qVBsina , (3)

    где a - угол между векторами скорости и магнитной индукции.

    Таким образом магнитная часть силы Лоренца максимальна, если направление движения частицы перпендикулярно магнитному полю (a =p /2), и равна нулю, если частица движется вдоль направления поля В (a =0).

    Магнитная сила F м пропорциональна векторному произведению , т.е. она перпендикулярна вектору скорости заряженной частицы и поэтому работы над зарядом не совершает. Это означает, что в постоянном магнитном поле под действием магнитной силы искривляется лишь траектория движущейся заряженной частицы, но энергия ее всегда остается неизменной , как бы частица ни двигалась.

    Направление магнитной силы для положительного заряда определяется согласно векторному произведению (рис. 1).

    Направление силы, действующей на положительный заряд в магнитном поле

    Рис. 1

    Для отрицательного заряда (электрона) магнитная сила направлена в противоположную сторону (рис. 2).

    Направление силы Лоренца, действующей на электрон в магнитном поле

    Рис. 2

    Магнитное поле В направлено к читателю перпендикулярно рисунку. Электрическое поле отсутствует.

    Если магнитное поле однородно и направлено перпендикулярно скорости, заряд массой m движется по окружности. Радиус окружности R определяется по формуле:

    где - удельный заряд частицы.

    Период обращения частицы (время одного оборота) не зависит от скорости, если скорость частицы много меньше скорости света в вакууме. В противном случае период обращения частицы возрастает в связи с возрастанием релятивистской массы.

    В случае нерелятивистской частицы:

    где - удельный заряд частицы.

    В вакууме в однородном магнитном поле, если вектор скорости не перпендикулярен вектору магнитной индукции (a№p /2), заряженная частица под действием силы Лоренца (ее магнитной части) движется по винтовой линии с постоянной по величине скоростью V . При этом ее движение складывается из равномерного прямолинейного движения вдоль направления магнитного поля В со скоростью и равномерного вращательного движения в плоскости перпендикулярной полю В со скоростью (рис. 2).

    Проекция траектории движения частицы на плоскость перпендикулярную В есть окружность радиуса:

    период обращения частицы:

    Расстояние h , которое проходит частица за время Т вдоль магнитного поля В (шаг винтовой траектории), определяется по формуле:

    h = Vcos a T . (6)

    Ось винтовой линии совпадает с направлением поля В , центр окружности перемещается вдоль силовой линии поля (рис. 3).

    Движение заряженной частицы, влетевшей под углом a№p /2 в магнитное поле В

    Рис. 3

    Электрическое поле отсутствует.

    Если электрическое поле E № 0, движение носит более сложный характер.

    В частном случае, если векторы E иB параллельны, в процессе движения изменяется составляющая скорости V 11 , параллельная магнитному полю, вследствие чего меняется шаг винтовой траектории (6).

    В том случае, если E иB не параллельны, происходит перемещение центра вращения частицы, называемое дрейфом, перпендикулярно полю В . Направление дрейфа определяется векторным произведением и не зависит от знака заряда.

    Воздействие магнитного поля на движущиеся заряженные частицы приводят к перераспределению тока по сечению проводника, что находит свое проявление в термомагнитных и гальваномагнитных явлениях.

    Эффект открыт нидерландским физиком Х.А. Лоренцем (1853-1928).

    Временные характеристики

    Время инициации (log to от -15 до -15);

    Время существования (log tc от 15 до 15);

    Время деградации (log td от -15 до -15);

    Время оптимального проявления (log tk от -12 до 3).

    Диаграмма:

    Технические реализации эффекта

    Техническая реализация действия силы Лоренца

    Техническая реализация эксперимента по прямому наблюдению действия силы Лоренца на движущийся заряд как правило довольно сложна, так как соответствующие заряженные частицы имеют молекулярный характерный размер. Поэтому наблюдение их траектории в магнитном поле требует вакуумирования рабочего объема во избежание столкновений, искажающих траекторию. Так что специально такие демонстрационные установки как правило не создаются. Легче всего для демонстрации использовать стандартный секторный магнитный масс-анализатор Ниера, см. Эффект 409005, - действие которого целиком основано на силе Лоренца.

    Применение эффекта

    Типичное испольтзование в технике - датчик Холла, широко используемый в измерительной технике.

    Пластинка из металла или полупроводника помещается в магнитное поле В . При пропускании через нее электрического тока плотности j в направлении перпендикулярном магнитному полю в пластине возникает поперечное электрическое поле, напряженность которого Е перпендикулярна обоим векторамj и В . По данным измерений находят В .

    Объясняется этот эффект действием силы Лоренца на движущийся заряд.

    Гальваномагнитные магнитометры. Масс-спектрометры. Ускорители заряженных частиц. Магнитогидродинамические генераторы.

    Литература

    1. Сивухин Д.В. Общий курс физики.- М.: Наука, 1977.- Т.3. Электричество.

    2. Физический энциклопедический словарь.- М., 1983.

    3. Детлаф А.А., Яворский Б.М. Курс физики.- М.: Высшая школа, 1989.

    Ключевые слова

    • электрический заряд
    • магнитная индукция
    • магнитное поле
    • напряженность электрического поля
    • сила Лоренца
    • скорость частицы
    • радиус окружности
    • период обращения
    • шаг винтовой траектории
    • электрон
    • протон
    • позитрон

    Разделы естественных наук:

    Почему одних ученых история вносит на свои страницы золотыми буквами, а некоторых стирает бесследно? Каждый пришедший в науку обязан оставить в ней свой след. Именно по величине и глубине этого следа судит история. Так, Ампер и Лоренц внесли неоценимый вклад в развитие физики, что дало возможность не только развивать научные теории, но получило весомую практическую ценность. Как появился телеграф? Что такое электромагниты? На все эти вопросы даст ответ сегодняшний урок.

    Для науки представляют огромную ценность полученные знания, которые впоследствии могут найти свое практическое применение. Новые открытия не только расширяют исследовательские горизонты, но и ставят новые вопросы, проблемы.

    Выделим основные открытия Ампера в области электромагнетизма.

    Во-первых, это взаимодействия проводников с током. Два параллельных проводника с токами притягиваются друг к другу, если токи в них сонаправлены, и отталкиваются, если токи в них противонаправлены (рис. 1).

    Рис. 1. Проводники с током

    Закон Ампера гласит:

    Сила взаимодействия двух параллельных проводников пропорциональна произведению величин токов в проводниках, пропорциональна длине этих проводников и обратно пропорциональна расстоянию между ними.

    Сила взаимодействия двух параллельных проводников,

    Величины токов в проводниках,

    − длина проводников,

    Расстояние между проводниками,

    Магнитная постоянная.

    Открытие этого закона позволило ввести в единицы измерения величину силы тока, которой до того времени не существовало. Так, если исходить из определения силы тока как отношения количества заряда перенесенного через поперечное сечение проводника в единицу времени, то мы получим принципиально не измеряемую величину, а именно количество заряда, переносимое через поперечное сечение проводника. На основании этого определения мы не сможем ввести единицу измерения силы тока. Закон Ампера позволяет установить связь между величинами сил тока в проводниках и величинами, которые можно измерить опытным путем: механической силой и расстоянием. Таким образом, получена возможность ввести в рассмотрение единицу силы тока - 1 А (1 ампер).

    Ток в один ампер - это такой ток, при котором два однородных параллельных проводника, расположенных в вакууме на расстоянии один метрот друга взаимодействуют с силой Ньютона.

    Закон взаимодействия токов - два находящихся в вакууме параллельных проводника, диаметры которых много меньше расстояний между ними, взаимодействуют с силой, прямо пропорциональной произведению токов в этих проводниках и обратно пропорциональной расстоянию между ними.

    Еще одно открытие Ампера – это закон действия магнитного поля на проводник с током. Он выражается прежде всего в действии магнитного поля на виток или рамку с током. Так, на виток с током в магнитном поле действует момент силы, которая стремится развернуть этот виток таким образом, чтобы его плоскость стала перпендикулярна линиям магнитного поля. Угол поворота витка прямо пропорционален величине тока в витке. Если внешнее магнитное поле в витке постоянно, то значение модуля магнитной индукции также величина постоянная. Площадь витка при не очень больших токах также можно считать постоянной, следовательно, справедливо то, что сила тока равна произведению момента сил, разворачивающих виток с током, на некоторую постоянную при неизменных условиях величину.

    – сила тока,

    – момент сил, разворачивающих виток с током.

    Следовательно, появляется возможность измерять силу тока по величине угла поворота рамки, которая реализована в измерительном приборе – амперметре (рис. 2).

    Рис. 2. Амперметр

    После открытия действия магнитного поля на проводник с током Ампер понял, что это открытие можно использовать для того, чтобы заставить проводник двигаться в магнитном поле. Так, магнетизм можно превратить в механическое движение – создать двигатель. Одним из первых, работающих на постоянном токе, был электродвигатель (рис. 3), созданный в 1834 г. русским электротехником Б.С. Якоби.

    Рис. 3. Двигатель

    Рассмотрим упрощенную модель двигателя, которая состоит из неподвижной части с закрепленными на ней магнитами – статора. Внутри статора может свободно вращаться рамка из проводящего материала, которая называется ротором. Для того чтобы по рамке мог протекать электрический ток, она соединена с клеммами при помощи скользящих контактов (рис. 4). Если подключить двигатель к источнику постоянного тока в цепь с вольтметром, то при замыкании цепи рамка с током начнет вращение.

    Рис. 4. Принцип работы электродвигателя

    В 1269 г. французский естествоиспытатель Пьер де Марикур написал труд под названием «Письмо о магните». Основной целью Пьера де Марикура было создание вечного двигателя, в котором он собирался использовать удивительные свойства магнитов. Насколько успешными были его попытки, неизвестно, но достоверно то, что Якоби использовал свой электродвигатель для того, чтобы привести в движение лодку, при этом ему удалось ее разогнать до скорости 4,5 км/ч.

    Необходимо упомянуть еще об одном устройстве, работающем на основе законов Ампера. Ампер показал, что катушка с током ведет себя подобно постоянному магниту. Это значит, что можно сконструировать электромагнит – устройство, мощность которого можно регулировать (рис. 5).

    Рис. 5. Электромагнит

    Именно Амперу пришла идея о том, что, скомбинировав проводники и магнитные стрелки, можно создать устройство, которое предает информацию на расстояние.

    Рис. 6. Электрический телеграф

    Идея телеграфа (рис. 6) возникла в первые же месяцы после открытия электромагнетизма.

    Однако широкое распространение электромагнитный телеграф приобрел после того, как Самюэль Морзе создал более удобный аппарат и, главное, разработал двоичную азбуку, состоящую из точек и тире, которая так и называется: азбука Морзе.

    С передающего телеграфного аппарата с помощью «ключа Морзе», который замыкает электрическую цепь, в линии связи формируются короткие или длинные электрические сигналы, соответствующие точкам или тире азбуки Морзе. На приемном телеграфном аппарате (пишущий прибор) на время прохождения сигнала (электрического тока) электромагнит притягивает якорь, с которым жестко связано пишущее металлическое колесико или писец, которые оставляют чернильный след на бумажной ленте (рис. 7).

    Рис. 7. Схема работы телеграфа

    Математик Гаусс, когда познакомился с исследованиями Ампера, предложил создать оригинальную пушку (рис. 8), работающую на принципе действия магнитного поля на железный шарик – снаряд.

    Рис. 8. Пушка Гаусса

    Необходимо обратить внимание на то, в какую историческую эпоху были сделаны эти открытия. В первой половине XIX века Европа семимильными шагами шла по пути промышленной революции – это было благодатное время для научно-исследовательских открытий и быстрого внедрения их в практику. Ампер, несомненно, внес весомый вклад в этот процесс, дав цивилизации электромагниты, электродвигатели и телеграф, которые до сих пор находят широкое применение.

    Выделим основные открытия Лоренца.

    Лоренц установил, что магнитное поле действует на движущуюся в нем частицу, заставляя ее двигаться по дуге окружности:

    Cила Лоренца - центростремительная сила, перпендикулярная направлению скорости. Прежде всего, открытый Лоренцем закон, позволяет определять такую важнейшую характеристику, как отношение заряда к массе - удельный заряд .

    Значение удельного заряда - величина уникальная для каждой заряженной частицы, что позволяет их идентифицировать, будь то электрон, протон или любая другая частица. Таким образом, ученые получили мощный инструмент для исследования. Например, Резерфорд сумел провести анализ радиоактивного излучения и выявил его компоненты, среди которых присутствуют альфа-частицы - ядра атома гелия - и бета-частицы - электроны.

    В ХХ веке появились ускорители, работа которых основана на том, что заряженные частицы ускоряются в магнитном поле. Магнитное поле искривляет траектории частиц (рис. 9). Направление изгиба следа позволяет судить о знаке заряда частицы; измерив радиус траектории, можно определить скорость частицы, если известны ее масса и заряд.

    Рис. 9. Искривление траектории частиц в магнитном поле

    На этом принципе разработан Большой адронный коллайдер (рис. 10). Благодаря открытиям Лоренца наука получила принципиально новый инструмент для физических исследований, открывая дорогу в мир элементарных частиц.

    Рис. 10. Большой адронный коллайдер

    Для того чтобы охарактеризовать влияние ученого на технический прогресс, вспомним о том, что из выражения для силы Лоренца вытекает возможность рассчитать радиус кривизны траектории частицы, которая движется в постоянном магнитном поле. При неизменных внешних условиях этот радиус зависит от массы частицы, ее скорости и заряда. Таким образом, получаем возможность классифицировать заряженные частицы по этим параметрам и, следовательно, можем проводить анализ какой-либо смеси. Если смесь веществ в газообразном состоянии ионизировать, разогнать и направить в магнитное поле, то частицы начнут двигаться по дугам окружностей с различными радиусами - частицы будут покидать поле в разных точках, и остается только зафиксировать эти точки вылета, что реализуется при помощи экрана, покрытого люминофором, который светится при попадании на него заряженных частиц. Именно по такой схеме работает масс-анализатор (рис. 11). Масс-анализаторы широко применяют в физике и химии для анализа состава смесей.

    Рис. 11. Масс-анализатор

    Это еще не все технические устройства, которые работают на основе разработок и открытий Ампера и Лоренца, ведь научное знание рано или поздно перестает быть исключительной собственностью ученых и становится достоянием цивилизации, при этом оно воплощается в различных технических устройствах, которые делают нашу жизнь более комфортной.

    Список литературы

    1. Касьянов В.А., Физика 11 кл.: Учебн. для общеобразоват. учреждений. - 4-е изд., стереотип. - М.: Дрофа, 2004. - 416с.: ил., 8 л. цв. вкл.
    2. Генденштейн Л.Э., Дик Ю.И., Физика 11. - М.: Мнемозина.
    3. Тихомирова С.А., Яворский Б.М., Физика 11. - М.: Мнемозина.
    1. Интернет-портал «Чип и Дип» ().
    2. Интернет-портал «Киевская городская библиотека» ().
    3. Интернет-портал «Институт дистанционного образования» ().

    Домашнее задание

    1. Касьянов В.А., Физика 11 кл.: Учебн. для общеобразоват. учреждений. - 4-е изд., стереотип. - М.: Дрофа, 2004. - 416с.: ил., 8 л. цв. вкл., ст. 88, в. 1-5.

    2. В камере Вильсона, которая размещена в однородном магнитном поле с индукцией 1,5 Тл, альфа-частица, влетая перпендикулярно к линиям индукции, оставляет след в виде дуги окружности радиусом 2,7 см. Определите импульс и кинетическую энергию частицы. Масса альфа-частицы 6,7∙10 -27 кг, а заряд 3,2∙10 -19 Кл.

    3. Масс-спектрограф. Пучок ионов, разогнанных разницей потенциалов 4 кВ, влетает в однородное магнитное поле с магнитной индукцией 80 мТл перпендикулярно линиям магнитной индукции. Пучок состоит из ионов двух типов с молекулярными массами 0,02 кг/моль и 0,022 кг/моль. Все ионы обладают зарядом 1,6 ∙ 10 -19 Кл. Ионы вылетают из поля двумя пучками (рис. 5). Найти расстояние между пучками ионов, которые вылетают.

    4. * С помощью электродвигателя постоянного тока поднимают груз на тросе. Если отключить электродвигатель от источника напряжения и замкнуть ротор накоротко, груз будет опускаться с постоянной скоростью. Объясните это явление. В какую форму переходит потенциальная энергия груза?